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Lecture 1: Agreeing to Disagree, Aumann (1976)

Econ 712: Topics in Micro Theory January 10, 2018

Agreeing to Disagree, Aumann (1976)
Professor Annie Liang Zach Schutzman

Overview

1. defined “common knowledge”

2. introduced the partitional model (called the Aumann model now)

3. showed that agents cannot “agree to disagree” under a common prior

Idea: If there is a common prior and common knowledge of posterior beliefs (I know that you know that I
know... and so on, forever), then the posteriors are identical.

Framework

Let (Ω,B, p) be a probability space, with (Ω, B) the state space and p a common prior. Denote by Pi the
partition of Player i. At the state ω ∈ Ω, Player i learns Pi(ω), that is, the chunk of her partition which
contains ω. Note that we are implicitly assuming that a player cannot believe that the true state of the
world is ω ∈ A if in fact ω /∈ A.

We can illustrate this with an example:

Ω = {1, 2, 3, 4, 5, 6}
P1 = {{1, 2, 3}, {4, 5}, {6}}
P2 = {{1, 2}, {3, 4}, {5}, {6}}

The join P1 ∨ P2 is the coarsest common refinement of P1 and P2.

→ in our example, P1 ∨ P2 = {{1, 2}, {3}, {4}, {5}, {6}}

We can think of the join as ‘what players can get by pooling their knowledge’.

The meet P1 ∧ P2 is the finest common coarsening of P1 and P2.

→ in our example, P1 ∧ P2 = {{1, 2, 3, 4, 5}, {6}}

Given a state ω ∈ Ω, an event E is common knowledge at ω if E includes the member of the meet which
includes ω.

→ The set {1, 2, 3, 4, 5} is common knowledge at ω = 3.

Observe that Ω itself is always common knowledge.
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Result

Fix an event A. Let qi be the posterior probability of A given Player i’s information. That is,

qi =
p(A ∩ Pi(ω))

p(Pi(ω))

If it is common knowledge at ω that q1 = a and q2 = b then a = b.

Proof: Let P be the member of the meet containing ω. Write P =
⋃
j

Pj where the Pj are disjoint elements

of P1.

Since q1 = a is common knowledge at ω, it must be that q1 = a at each partition element Pj . Thus, for all
j,

a = p(A ∩ Pj)/p(Pj)

ap(Pj) = p(A ∩ Pj)

a
∑
j

p(Pj) =
∑
j

p(A ∩ Pj)

ap(P ) = p(A ∩ P )

By doing the same thing for Player 2, we can get an expression that says bp(P ) = p(A ∩ P ), so a = b.

? Note that knowledge of the posterior alone is not sufficient. Consider the following example:
Ω = {1, 2, 3, 4}
P1 = {{1, 2}, {3, 4}}
P2 = {{1, 2, 3}, {4}}
ω = 2, A = {1, 4}, uniform prior

Player 1’s posterior at A is 1/2, Player 2’s is 1/3. Player 2 knows that Player 1’s posterior is 1/2, but not
why, as Player 2 doesn’t know which of the two chunks she has been told contains ω.
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We can’t disagree forever, Geanakopolos and Polemarchakis (1982)
Professor Annie Liang Zach Schutzman

Overview

1. points out that the starting point of Aumann (1976) is rather severe. When are posterior beliefs
common knowledge? Is that a bad assumption?

2. Asks whether we can get to the same place through a more realistic process - repeated communication
of posterior beliefs.

3. Answer: if the partitions are finite, then yes.

4. Repeated communication is generally equivalent to pooling information, but there exist counterexam-
ples.

Example:
Ω = {1, 2, . . . , 9}
P1 = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}
P2 = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9}}
ω = 1, A = {3, 4}, uniform prior

Player 1 announces her posterior is 1/3, and Player 2 announces 1/2. Player 1 knows that the true state is in
{1, 2, 3, 4}, but she already knew this, so her posterior is still 1/3. Player 2 doesn’t learn anything either, as
her belief is 1/3 for {1, 2, 3} and for {4, 5, 6}. Player 1 announces 1/3 again. But, since she didn’t announce
1, Player 2 knows that Player 1 thinks it’s in {1, 2, 3}, so Player 2 announces 1/3 as well. They have arrived
at the same posterior and thus pooled their information.

We can describe this communication protocol in an algorithm:

1. Let P 1 = {P 1
1 , . . . , P

1
K} and P 2 = {P 2

1 , . . . P
2
L}

2. Player 1 announces initial posterior q11(ω) = p(P 1(ω)∩A)
p(P 1(ω))

3. Player 2 learns that ω is in
⋃

k∈a1

P 1
k where a1 −

{
k :

p(P (P 1
k∩A))

p(P 1
k (ω))

= q1(ω)
}

. That is, all of the partitions

for which Player 1 would have announced what she did in the previous step.

4. Player 2 announces a revised posterior q21(ω) =
p(P 2(ω)∩

⋃
k∈a1

P 1
k∩A)

p(P 2(ω)∩
⋃

k∈a1

P 1
k )

5. Player 1 performs a similar revision, and the process repeats.
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Result

The algorithm described converges in no more than K + L announcements, where K and L are the sizes of
the players’ partitions.

What posteriors does the process converge to? Interestingly, they need not be the same posteriors as in the
setting where the players pool information, such as in the following example:

Ω = {1, 2, 3, 4}
P1 = {{1, 2}, {3, 4}}
P2 = {{1, 3}, {2, 4}}
ω = 1, A = {1, 4}, uniform prior

Each player initially announces a posterior of 1/2, and nothing is learned. Had they pooled their knowledge,
they could know for certain that the state of the world is ω = 1.
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The Electronic Mail Game, Rubenstein (1989)
Professor Annie Liang Zach Schutzman

Overview

1. How sensitive are strategic predictions to assumptions about knowledge?

2. Demonstrated a case in which predictions are very sensitive. Subsequently, there has been debate over
whether this is the “right” notion of common/mutual knowledge.

Framework

Consider a two-player game where each player chooses from actions {A,B}. There are two states the world
could be in, a or b, and each corresponds with a different payoff matrix.

World a

A B

A M,M 0,−L
B −L, 0 0, 0

World b

A B

A 0, 0 0,−L
B −L, 0 M,M

L and M are arbitrary values satisfying L > M > 0 and, letting p denote the probability we are in World a,
suppose that p < 1/2. Observe that (A,A) is better in World a and (B,B) in World b, but that A is a ‘safe’
action, in that regardless of which world we are in, playing A always has non-negative payoff.

Consider the following communication protocol:

1. Player 1 learns the state of the world

2. If the state is a, nothing happens. If the state is b, her computer sends an email to Player 2, which
fails to arrive with probability ε > 0.

3. If Player 2 receives an email, he sends one back to Player 1, which fails to send with probability ε > 0.

4. This continues until an email fails. That is, the computers automatically send out a new email after
receiving one.

Let Ti be the type of Player i, and set it equal to the number of messages Player i’s computer sent. If
T1 = T2 =∞, then it is common knowledge that we are in World b. If T1 and T2 are both finite and strictly
greater than zero, it is mutual, but not common, knowledge that we are in World b.
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Result

Proposition 3.1 There exists a unique Nash equilibrium in which Player 1 plays A in World a. In this
equilibrium, both players play A regardless of the number of messages sent.

Proof: We proceed by induction. Assume that Player 1 will play A if she knows that we are in World a.
Denote this by S1(0) = A, the strategy of Player 1 when she is type 0 is A.

In this case, Player 2 thinks that either we are in World a and Player 1 never sent a message at all, or we
are in World b but Player 1’s first message got lost. The first happens with probability (1− p)/(1− p+ pε)
and the second with probability (pε)/(1− p+ pε).

Then Player 2’s expected payoff to A is at least (actually equal to)

M(1− p) + 0(pε)

1− p+ pε

and his expected payoff to B is no more than

−L(1− p) +M(pε)

1− p+ pε

By our assumptions on p, L,M , the expected payoff to A is strictly greater than the maximum expected
payoff to B, so Player 2 plays A in this case, so S2(0) = A.

Now, suppose that Si(Ti) = A for Ti < t. Consider Ti = t. There are two possibilities, either Player 1’s tth

message was lost or Player 2’s tth reply was lost. These happen with conditional probabilities ε/(ε+(1− ε)ε)
and ((1− ε)ε)/(ε+ (1− ε)ε), which we will call z and 1− z, respectively, for ease of notation. Observe that
we know that z > 1/2.

The expected payoff to A is zero, as we are certainly in World b. The expected payoff to B is at most
z(−L) + (1 − z)M . Because L > M and z > 1/2, this is a negative value, so the expected payoff to A is
strictly greater than that to B.

Since playing A dominates, S1(t) = A, and a symmetric argument for Player 2 shows that S2(t) = A as well.

Conclusion

1. Is this notion of ‘almost common knowledge’ reasonable?

2. One objection is that taking the limit as ε goes to zero does not yield the same game as in the case
where ε is actually equal to zero.

3. Formally, interim types are close to types in the product topology, which we will discuss later.

4. Rubenstein’s argument is that nevertheless, high Ti is like common knowledge.
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Approximating CK with Common Beliefs, Monderer and Samet (1989)
Professor Annie Liang Zach Schutzman

Overview

1. What should we mean when we say “almost common knowledge”?

2. Rubenstein (1989) looks at ‘knowledge which is almost-common’

3. This paper looks at ‘common almost-knowledge’

Main Contribution

1. Weakens common knowledge to a notion of common p-beliefs

2. Shows that equilibrium predictions under common p-belief are close to those under common knowledge
when p is large

Quick Review of the Standard Model

- I - the set of all agents

- (Ω,Σ, µ) - a probability space

- πi - the partition of Ω into measurable sets with positive measure of Player i

- Fi - a σ-field generated by the collection of πi

The ‘knowledge’ of Player i at the event E means Ki(E) = {ω : πi(ω) ⊂ E}

We can define common knowledge in the following two equivalent ways:

A) Let C1 be the set of states at which every agent knows E

Recursively let Cn be the set of states at which every agent knows Cn−1.

Let C(E) =
⋂
n≥1

Cn. Then E is common knowledge at ω if and only if ω ∈ C(E).

B) Call E evident knowledge if E ∈ Ki(E) for all i. In other words, E is evident knowledge if whenever E
occurs, every agent knows that it has. An event F is common knowledge at ω if there exists an evident
knowledge event E such that ω ∈ E and for all agents i, E ⊂ Ki(F ).
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New Framework

In the new framework, we’ll let I, (Ω,Σ, µ), and πi be as before.

Definition 4.2 Player i p-believes an event E at ω if µ(E|πi(ω)) ≥ p.

As a special case, if we take p = 1, this is almost, but not exactly the same as, knowledge.
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