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Introduction

Math 500 is a Masters-level first-course in Topology and Geometry. The course follows James
Munkres’ Topology, 2ed. and this set of notes is based on the Fall 2017 offering.

These notes are being live-TeXed, though I edit for typos and add diagrams requiring the TikZ
package separately. I am using the editor TeXstudio. The template for these notes was created by
Zev Chonoles and is made available (and being used here) under a Creative Commons License.

I am responsible for all faults in this document, mathematical or otherwise; any merits of the
material here should be credited to the lecturer, not to me.

Please email any corrections or suggestions to ianzach+notes@seas.upenn.edu.
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Lecture 1 (2017-08-30)

What is Topology?

Definition. A topology is a set X with a collection of subsets A ⊂ P(X) such that:

1 ∅, X ∈ A

2 A is closed under finite intersection (the intersection of a finite subset of A is in A)

3 A is closed under arbitrary union (the union of any (possibly infinite) subset of A is in A)

The phrases ‘‘A is a topology on X”, ‘‘X is a topological space with topology A, and the notation
(X,A) all refer to the same concept.

Definition. The standard topology (also called the euclidean topology or metric topology) on
Rn is the set of subsets U ⊂ Rn such that for every U , every point x ∈ U is interior, meaning that
there exists some radius r > 0 such that the ball of radius r centered at x is entirely contained in U .

Definition. A set is open in a topological space X if it belongs to the topology on X.

Example. The standard topology is a topology over Rn:

1 Every point in the empty set is vacuously interior, and every point of Rn is trivially interior

2 If we take two open sets and intersect them, any point in the intersection must be an interior
point in both constituent sets. The smaller of the two balls witnessing this must lie entirely
within both constituent sets, and therefore entirely within the intersection. By induction, we
have the finite intersection of open sets being open.

3 Intuitively, taking any union of open sets only creates a bigger set. The ball witnessing any
point as interior to some open set clearly lies in any union including that open set.

We can see from this example why it’s important to specify closure under finite intersection.
Singleton sets are not open in the standard topology on Rn, but the Nested Interval Theorem gives
us a way to construct a singleton set from the countable intersection of open intervals.

Example. If X is our topological space, {∅, X} is a topology, called the trivial topology.

Example. Similarly, all of P(X) is a topology, called the discrete topology.

Example. The Zariski topology on Rn is a little more interesting. A set is open in the Zariski
topology if it is the complement of the root set of some polynomial. Open sets in the one-dimensional
case look like the real line minus a finite number of points. It gets a little more complicated in
higher dimensions, as we can have zeroes along entire dimensions of a euclidean space. Let’s verify
that this is a topology:

1 The empty set is the complement of the root set of the zero function, and the entire space Rn
is the complement of the root set of a polynomial which has no real roots, such as f(~x) = 6.

2 The intersection of two open sets, corresponding to polynomials P and Q is, by DeMorgan’s
Laws, Rn \ {x | x is a root of P or Q}. Something is a root of P or Q, it must be a root of
the product PQ. Since the finite product of polynomials is a polynomial, this set is still the
complement of the root set of some polynomial, and is therefore open, and we have closure
under finite intersection.
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3 Again by DeMorgan’s Laws, the union of two open sets corresponding to polynomials P and
Q is the set Rn \ {x | x is a root of P and Q}. The set of points which are roots of P and
Q are the roots of the greatest common polynomial divisor of P and Q. Since this is also a
polynomial, our set is the complement of the root set of a polynomial and is therefore open.
Since the greatest common polynomial divisor of any set of polynomials has root set no greater
than any of the constituent polynomials, we properly have closure under arbitrary union.

The Zariski topology is an object of importance in the area of algebraic geometry.

Definition. If X is a topological space with topology A and Y ⊂ X, then B is a topology on Y
where a subset V ⊂ Y is open in B if and only if there is a U open in A such that V = U ∩ Y . This
is called the subset or subspace topology.

Example. Let H2 denote the closed upper-half plane in R2. That is, the set of points (x, y) ∈ R2

such that y ≥ 0. Any set which was open in R2 and does not intersect the x-axis is still open in H2.
However, a set like an open half-disk against the x-axis together with the line segment where it
rests up against the x-axis was not an open set in R2, as the boundary points are not interior, but
it is open in H2 with the subspace topology, as it is the intersection of an open disk in R2 with the
upper half-plane.
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Lecture 2 (2017-09-01)

Continuous Maps

Continuous maps are the standard morphisms in topology.

In Analysis, we have a definition of continuity which looks like:

Definition. A function f : X → Y is continuous at x ∈ X if for any δ > 0 there exists an ε > 0
such that ‖x− y‖ < ε implies ‖f(x)− f(y)‖ < δ.

The issue with this definition is that we have no natural notion of distance in topology. Instead, we
use the definition:

Definition. A function f : X → Y is continuous if the inverse image of an open set in Y is open
in X. Equivalently, the inverse image of closed sets are closed.

It turns out that in metric spaces like Rn with the standard topology, these definitions are equivalent.

Example. Let’s consider two topological spaces: (R, std), the real numbers with the standard
topology, and (R,P(R)), the real numbers with the discrete topology. The map f : (R,P(R)) →
(R, std), where f(x) = x is continuous. Since every set is open in the discrete topology, the inverse
image of any set, in particular any open set, is open. The map g : (R, std) → (R,P(R)), where
g(x) = x is not continuous. To see this, take any set that is closed with respect to the standard
topology. This set is open in the discrete topology, but its inverse image is closed.

This raises the question: is there any g : (R, std)→ (R,P(R)) which is continuous?

Theorem. The only continuous functions g : (R, std)→ (R,P(R)) are the constant maps.

Proof. First, it is easy to see that a constant map is continuous. Without loss of generality, we’ll
assume that g(x) = 0. Let V be open in the discrete topology. If V contains 0, then the inverse
image of V is all of R. If V does not contain zero, then the inverse image of V is the empty set.
Since both of these are open in the standard topology, the inverse image of any open set is open,
and the map is continuous.

To see that such a continuous map must be constant, first observe that R and ∅ are the only sets
which are both closed and open with respect to the standard topology. Let g : (R, std)→ (R,P(R))
be a continuous map and pick some x ∈ R. The set {g(x)} is both closed and open in the discrete
topology (as every set is closed and open), so its inverse image must be, in particular, open. But
the inverse image cannot be empty, as we know for sure it contains x, and the only non-empty
closed and open set in the standard topology is the entire space. Therefore, for any x, y ∈ R, we
have g(x) = g(y), which is only true for constant maps.

Definition. A homeomorphism is a continuous bijection between two topological spaces such
that the inverse is also continuous.

Under a homeomorphism, we also have the property that the image of open sets is open. This
induces a bijection between the open sets of the two topological spaces. In a sense, the existence of
a homeomorphism means that two topological spaces are the same.
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Example. The two spaces (−1, 1) and (−2, 2) with the standard topology are homeomorphic under
the map f(x) = 2x.

Example. The two spaces (−1, 1) and R with the standard topology on each are homeomorphic
under the map f(x) = tan(π2x).

Example. Let Sn = Rn ∪ {∞}. A set U ⊂ Sn is open if:

U = ∅ or U = Sn

U ⊂ Rn and U is open with respect to the standard topology.

∞ ∈ U and U ∩ Rn is the complement of a compact subset of Rn. That is, U looks like all of
Rn with a closed and bounded chunk removed, and an additional point ∞.

This forms a topology, and the set Sn is the surface of the n-dimensional sphere. If we think about
S2, there’s a natural embedding in R3, but it turns out that S2 \ {(0, 0, 1)} is homeomorphic to R2.
If we use the (north polar) stereographic projection, which maps points in S2 to the point in the R2

plane according to the straight line passing through the north pole and that point, we get a nice
homeomorphism, and this is easy to see from the subspace topology that S2 inherits from R3. If we
then include that the north pole maps to our added point ∞, we get a map from all of S2 to the set
R2 ∪ {∞} which is a homeomorphism.

The Quotient Topology

Let (X,A) be a topological space and ∼ an equivalence relation on X. Then X/ ∼ inherits a
topology, which is that U ′ ⊂ X/ ∼ is open if and only if there is some open set U ⊂ X such that
U ′ = U/ ∼.

Definition. This topology is called the quotient topology, or the identification map.

Example. Take R2 with the standard topology and define an equivalence relation (x, y) ∼ (x,−y).
The quotient space looks like the closed (upper or lower) half-plane.

Example. R2 with the standard topology quotiented by the equivalence relation (x, y) ∼ (−x,−y)
looks like a cone, and is actually homeomorphic to R2.

Example. R2 with the standard topology and the equivalence relation (x, y) ∼ (x+1, y) ∼ (x, y+1)
has a quotient space that looks like the unit square with opposite sides glued together. This is
homeomorphic to a (genus 1) torus.
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Lecture 3 (09-06-2017)

The Pullback Topology

Let (X,A) be a topological space and Y some set. Given a map f : X → Y , Y inherits a topology
from X where V ⊂ Y is open if and only if f−1(V ) ⊂ X is open.

Definition. This topology on Y is called the pullback topology.

The pullback topology is the finest topology on Y which makes f a continuous map.

Example. Take f : (−1, 1)→ R with f(x) = x and the standard topology on each. The pullback
topology on R has open sets ∅ and R, whose inverse images are themselves. Also, any set in R
which does not intersect the open interval (−1, 1), as all of these sets have empty inverse image.
Finally, any set which is open in (−1, 1) or whose intersection with (−1, 1) is open is also open in
the pullback topology.

Group Actions and Fundamental Regions

Lets think about Z2 as a group action on R2 , where applying (a, b) ∈ Z2 to (x, y) ∈ R2 means
shifting (x, y) right by a and up by b (left, down if a or b is negative, of course). We write this
as Z2 acts on R2 by (a, b).(x, y) = (x+ a, y + b). This establishes an equivalence relation on R2 :
(x0, y0)(x1, y1) if there exists (a, b) ∈ Z2 such that (a, b).(x0, y0) = (x1, y1). This divides R2 into
1× 1 squares, where each square is equivalent to any other, and we identify the left and right edges
and the top and bottom edges, but no two points in the interior of any given square are equivalent.
We call the squares fundamental regions.

Definition. A fundamental region of a group action and is the (closure of) largest region such
that no two interior points are identified with respect to the induced equivalence relation.

Example. The fundamental region described above, the square with opposite edges identified,
defines a torus.

Figure 1:

Open sets in the torus R are ∅ and T, and the intersection of any standard open set with the
fundamental region. This is the same as the inherited subspace topology from R2.

Example. If we consider R2/Z, where a ∈ Z acts on R2 by a.(x, y) = (x+ a, y). A fundamental
domain of this action is a vertical strip of unit width. Again this inherits a subspace topology from
R2.
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Figure 2:

Example. Consider again R2/Z but this time with the group action a.(x, y) = (x + a, (−1)ay).
The fundamental region is still a strip of unit width, but this time instead of identifying points on
the boundary with their horizontal translation, we identify them with their horizontal translation
composed with reflection about the x-axis. This space is homeomorphic to an infinite Moebius strip,
which is difficult to draw.

Example. Consider the equivalence relation on R2 described by (x, y) ∼ (x, y), (0, y) ∼ (1, y), and
(x, 0) ∼ (1− x, 1). The fundamental region again is a square with the left and right edges identified
by simple translation, but the top and bottom edges are now identified by translation plus a flip
across the squares vertical axis of symmetry. This is homeomorphic to the Klein bottle, which is,
again, hard to draw.

Example. The previous example where we also identify the left and right edges by translation and
a flip is called the real projective plane, denoted RP 2 . Both vertical and horizontal strips of this
space look like Moebius strips. This is, once again, not easy to draw.

Example. This one we can draw! Take the unit square as the fundamental region, but identify
the top and left edge with each other by symmetry about the corner where they intersect, and do
the same for the bottom and right edge. This space is homeomporhic to the 2-sphere S2 .
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Figure 3:
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Lecture 4 (09-08-2017)

Mapping Cylinders and Tori

Definition. Let I denote the closed unit interval [0, 1]. The mapping cylinder of a continuous
map : fX → Y is the quotient space defined by X × I/ ∼, where (x, 0) ∼ (f(x), 1).

Definition. The mapping torus of a map f : X → X is similar, except that we require that the
map be from a space to a copy of itself and we define the equivalence relation as (x, 0) ∼ (f(x), 0).

Example. The mapping cylinder of f : S1 → S1 where f(x) = x is a regular old cylinder. The
mapping torus is a regular old torus.

Example. We can equivalently think of S1 as {(x, y)|x2 + y2 = 1} in Euclidean space or as
{(r, θ)|r = 1} in polar coordinates. Using this second formulation, consider the map f : S1 → S1

where f(θ) = 2θ. This is a two-to-one map which maps antipodal points to each other. The mapping
cylinder of f is a Moebius strip.

Example. What about the three-to-one map f(θ) = 3θ? The mapping cylinder of this looks like a
three-bladed wing with a one-third twist and the ends glued together.

Boundaries and Exteriors

Let (X,A) be a topological space and let K ⊆ X.

Definition. The interior of K is the largest open subset contained in K. That is, it is the union
of all U ⊂ K such that U ∈ A.

Definition. The closure of K is the smallest closed subset containing K. That is, it is the
intersection of all V ⊃ K such that (X − V ) ∈ A.

Definition. The boundary of K is the intersection of the closure of K with the closure of the
complement of K, that is Bd(K) = K ∩X −K. If K is open, then Bd(K) = K −K. If K is closed,
then Bd(K) = ∅.

Example. Take K = Q ∩ [0, 1] ⊂ R with the standard topology on R. The interior of this set is
empty, as there is no open interval which doesn’t contain an irrational number, so ∅ is the largest
open subset in K. The closure of K is the entire interval [0, 1], as there is no smaller closed set
which contains all of the rationals in that interval. We also have that the boundary Bd(K) = [0, 1].

Example. Take K = R − {0} with the Zariski topology on R. The interior of K is K, as K is
open. The closure of K is all of R, and the boundary is {0}.

Definition. A point x is a limit point of K ⊂ X if every open set containing x has non-empty
intersection with K. Equivalently, x is a limit point of K if x ∈ K − {x}.

Example. Take R with the Zariski topology. If U is an open set, then every x ∈ R is a limit point
of U . In fact, for any infinite subset of R, every point in R is a limit point.

Definition. A neighborhood of a point x ∈ X is an open set containing x.

Example. In the either-or topology on [−1, 1] ⊂ R has open sets ∅, [−1, 1], a set is open if
and only if it does not contain 0 or it contains (−1, 1). If U is an open set and 0 ∈ U , then
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U = (−1, 1), [−1, 1), (−1, 1], or [−1, 1]. Closed sets are subsets of {−1, 1}, all of [−1, 1], ∅, and
any set that contains 0.

What are the continuous functions? From EO to std, constant functions are continuous. Anything
else? From std to EO, continuous functions look like f(x) = 1

2sgn(x).

Example. Take 1
2 ∈ [−1, 1] with the either-or topology. Is 1

2 a limit point of [−1, 1]− {1
2}? No!

That set is already closed, so it contains all of its limit points.

Is 0 a limit point of (1
2 ,

3
4)? Yes! Every open set containing 0 contains (−1, 1), so it obviously also

contains (1
2 ,

3
4).
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Lecture 5 (09-11-2017)

Topological Bases

Definition. Let X be a set. A collection B of subsets of X is called a base (or basis) of X if:

1 If x ∈ X then there is a B ∈ B such that x ∈ B. Equivalently, B covers X.

2 If B1, B2 ∈ B and x ∈ B1 ∩B2, then there is a B3 ∈ B such that B3 ⊂ B1 ∩B2 and x ∈ B3.

This is a weaker concept than a topology; we don’t require that the union of base elements is a base
element and we only require that the intersection of base elements contains another base element.

Example. Consider R2 with the standard topology. Define B = {Bx(r)|x ∈ R2, r > 0} as the set
of open balls in R2. This is a base. It is easy to see the first criterion is satisfied. To see the second,
consider two balls which both contain some point x. Then there is a small ball centered at x which
is fully contained in the intersection of the two balls. This smaller ball is also a base element, so we
are done.

Lemma. If B is a base and B1, B2, . . . , Bn ∈ B, and x ∈ B1 ∩ B2 ∩ · · · ∩ Bn then there exists a
base element B′ ⊂ B1 ∩ · · · ∩Bn which contains x.

Proof. We proceed by induction. Since x ∈ B1 ∩ B2, there exists some D1 ∈ B such that
x ∈ D1 ⊂ B1 ∩ B2. Then x ∈ D1 ∩ B3, so there exists some D2 ∈ B with x ∈ D2. We proceed
iteratively like this to find there is some Dn−1 ∈ B with x ∈ Dn−1, and we set B′ = Dn−1.

Definition. A topology generated by a base is the collection of sets which are unions of base
elements.

If X is a set with a base B, then there is a smallest (coarsest) topology on X containing B, which
is the topology generated by B. Open sets are the base elements, arbitrary unions of base elements,
and ∅ and X by definition. Do we get the intersection property as well?

Claim. Yes.

Proof. If B1, . . . , Bn are base elements, then we can write the intersection
⋂
i∈[n]

Bi as the union of

base elements just by taking neighborhoods of each point in the intersection. If we have U1, . . . , Un
open in X and x ∈

⋂
i∈[n]

Ui, then there is some base element in the intersection containing x. If we

do this for all points in the intersection, we can write the intersection as an arbitrary union of base
elements, and we are done.

Definition. Let (X,A be a topological space. Take B ⊂ A a collection of sets such that ∅, X ∈ B

and if x ∈ U ∈ A, then there is some B ∈ B such that x ∈ B ⊂ U . We call B a base for the
topology A.
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Lecture 6 (09-13-2017)

Bases, Separability, Hausdorff

Definition. If (X,A) is a topological space and p a point in X, then a base at the point p is
a collection U of open sets such that whenever p is in some V ∈ A, there exists a U ∈ U with
p ∈ U ∈ U.

Example. The set of open balls centered at p form a base at p in Rn with the standard topology.

Example. The set of open balls forms a base for Rn. So does the set of all rectangular prisms. So
does the set of all cubes. The set of cubes is obviously a subset of the set of prisms, but neither
of these is a subset or a superset of the set of balls. We can also have a base where we have
balls/prisms/cubes with rational centers and rational radii/side lengths. The cardinality of these
bases is the same as the cardinality of Q.

Definition. If a set has a base which has cardinality in bijection with some subset of N or Q, then
it has a countable base.

Which topologies have countable bases? We have seen that Rn with the standard topology does.
How about Rn with the discrete topology? The answer is no. Since every singleton set is open in
the discrete topology, any base must contain every singleton. Since the number of singleton subsets
of R is uncountable, there cannot be a countable base.

Definition. A subset is dense if every open set in the space contains some element of the subset.

Definition. A space is separable if it has a countable, dense subset.

If a set has a countable base, it is separable, one countable, dense subset is just a single element
from each base element.

Observe that any topology on a finite or countable set is separable, as the set of singletons is
countable.

Definition. A topological space is Hausdorff if whenever we have two points p, q ∈ X with p 6= q,
there exist disjoint open sets such that p belongs to one and q belongs to the other.

Example. Rn with the standard topology is separable. If p 6= q, we can take small open balls
around p and q with radius less than half the distance between them. These balls are disjoint and
open, so we are done.

Example. The set [−1, 1] with the either-or topology is not Hausdorff. If we take p to be any
non-zero point in (−1, 1) and q = 0, then any open set containing zero must also contain p.

Example. The Zariski topology is not Hausdorff (this is on the homework).

Example. The line with a double point, defined as R t R/ ∼ with x ∼ y if x = y and x, y 6= 0
looks like the real line with two zeros, call them 01 and 02. The open sets in this topology are the
empty set, the whole space, and anything that kind of looks like a standard open set. This space
is not Hausdorff. Any open set containing 01 necessarily contains a neighborhood of 02, and vice
versa. This space is separable, however. Rational balls will form a countable base, for example.

Theorem. If A is a topology on X and B is a base for A, then B is a base.
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Proof. Clearly we have ∅, X ∈ B. We only need to show that any point in the intersection of two
base elements B1, B2 is in a third base element B3 ⊂ B1 ∩ B2. We have B1 ∩ B2 open because
B ⊂ A. So by the definition of a topology, there must e a B3 ∈ B with x ∈ B3 ⊂ B1 ∩ B2, and
we’re done.

Theorem. If B is a base for a set X and A is the topology generated by B, then B is a base for
the topology A.

Proof. This proof is also straightforward. If B1, B2 ∈ B are basis elements, and we take an
x ∈ B1 ∩B2 then there is some B3 ∈ B with x ∈ B3 ⊂ B1 ∩B2. Since B generates A, if x is in some
open set U ∈ A, then it is in the union of some collection {Bi} ⊂ B, so x ∈ Bj for some Bj ∈ B

with Bj ⊂ U , and we are done.

Definition. A subbase (or subbasis) for a set X is a collection S of sets such that
⋃
S∈S

S = X.
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Lecture 7 (09-18-2017)

Definition. A topological space X is first-countable if there exists a countable base at every
point x ∈ X.

Definition. A topological space X is second-countable if it has a countable base.

Example. Consider R tR/ ∼, where x ∼ y if x = y and x, y < 1. This looks like the line but with
two copies of the point {1} and a second copy of every point greater than 1. This space is not
Hausdorff. If we take an open set at the first copy of 1, it must intersect any open neighborhood of
the other copy of 1.

Example. Consider R tR/ ∼, where x ∼ y if x = y and x, y ≤ 1. This looks like the line with one
branch extending towards −∞ and two branches extending towards +∞ from 1. This space is
Hausdorff. If we take an open neighborhood around 1, we can see that the inverse image is open
only if that neighborhood contains pieces of all three branches, so it isn’t possible to have an open
set that contains 1 + ε1 for all ε1 > 0 on one branch without also having some small neighborhood
which also contains 1 + ε2 for some ε2 > 0 on the second.

Back to Subbases

Recall that a subbase S of a set X is a collection of subsets such that
⋃
S = X.

Definition. If S is a subbase, then the topology generated by S is the set of all arbitrary unions
and finite intersections of elements of S.

The proof that this is in fact a topology is trivial.

Definition. If S is a subbase, then a base B formed by the set of all finite intersections of elements
of S plus the set X itself is the base generated by S.

Again, the proof that this is a proper base is trivial.

Definition. Let (X,A1) and (Y,A2) be topological spaces with respective bases B1 ⊂ X and
B2 ⊂ Y . Then X × Y has a topology called the product topology which is generated by a base
B3 where W ∈ B3 if and only if W = U × V for some U ∈ B1 and V ∈ B2. That is, base elements
in the product topology are products of the base elements in the factor topologies.

Example. Consider R× R and let B1 = B2 = {(a, b)| −∞ ≤ a < b ≤ +∞} be bases for R which
consist of all open intervals. Then the base for R2, B3 = {(a, b)× (c, d)|(a, b) ∈ B1, (c, d) ∈ B2} is
the set of open rectangles in R2. We showed last time (in the general case of prisms in Rn) that
this is indeed a base.

Definition. Let (X,A1) and (Y,A2) be topological spaces with respective bases B1 ⊂ X and
B2 ⊂ Y . The the subbase S = {U × Y |U ∈ B1} ∪ {X × V |V ∈ B2} is the standard subbase on
X × Y .

The proof that the standard subbase generates the product topology extends naturally to all product
topologies generated by a finite number of factor spaces.

We can think of the product of k copies of X as the set of functions from a set of size k to X,
Xk = {f : [k]→ X}.
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Example. We can think of R3 as {f : {1, 2, 3} → R}. (f(1), f(2), f(3)) is an ordered triple in R3,
and it also completely specifies a function. We can think of Rn as×

[n]

R = {f : [n]→ R}. Similarly,

the set of all functions from R to R is RR =×
R
R.
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Lecture 8 (09-20-2017)

The Cantor set

The Cantor set is one of those pathological examples in mathematics. Consider the interval
C0 = [0, 1] ⊂ R. Given Ck, define Ck+1 as Ck with the middle third of each constituent interval
removed. So

C1 = [0,
1

3
] ∪ [

2

3
, 1]

C2 = [0,
1

9
] ∪ [

2

9
,
1

3
] ∪ [

2

3
,
7

9
] ∪ [

8

9
, 1]

and so on.

While we don’t have a precise definition for what it means to take a limit to C∞, we can define
C∞ =

⋂
Ci and this is totally fine from a topological point of view.

Definition. The Cantor set is the name given to C∞ = C.

The Cantor set is not empty, it’s actually uncountable. To see this, consider all reals in [0, 1]
expressed in their ternary expansion. The Cantor set contains all numbers which do not have any
1s in this representation. This is obviously an uncountable set. We also note that the Cantor set
doesn’t contain any intervals.

The Cantor set inherits a subspace topology from R. It is an exercise on the homework to show
that the map f : C∞ → [0, 1] where we replace all of the 2s in the ternary representation with 1s
and interpret it as the binary representation of a real number is a continuous function.

The Cantor set has no interior points, so the complement of the Cantor set is dense and open.

Definition. Denote the measure of the set Ck as mCk. Here we’ll use measure as ‘total length’,
although in a proper, measure-theoretic sense, this definition isn’t quite correct.

What is the measure of the Cantor set? The measure of C0 = [0, 1] is 1. We can define a recurrence,

where mCk = 1− 1
2

k∑
i=1

(2
3)i. Then, mC∞ = 1− 1

2

∞∑
i=1

(2
3)i = 1− 1

2

2
3

1− 2
3

= 0.

What if at each stage we remove a little less than 1
3 of each interval? Say we remove α

3 , where
0 < α < 1. We still get a Cantor-like set, but here we get a recurrence which looks like mCk =
mCk−1 − 2k−1α(1

3)k. Here, the measure of C∞ is 1 − α, but its interior is still empty, so its
complement is open and dense.

We can even make a Cantor-like set of full measure by putting a smaller copy of the Cantor set into
each gap created by removing an interval. This set is uncountable, has measure 1, and is nowhere
dense.

Definition. Call the function c : C→ [0, 1] such that if a = 0.a1a2a3 . . .t is the ternary expansion
of an element of the cantor set, c(a) = 0.a12

a2
2
a3
2 . . .b where we interpret c(a) as a binary number,

the Cantor map.

The Cantor map is pretty obviously surjective, but it is not bijective. To see this, consider 0.0222 . . .t
and 0.2t. These are not equal (they are representations of 1

3 and 2
3 , respectively) but the first maps

to 0.0111 . . .b and the second to 0.1b, and both of these are representations of 1
2 , so the map is

clearly not injective. This map is continuous, as we showed in the homework.
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We can also think of extending this map to c̃ : [0, 1] → [0, 1] where we use the original map on
elements of the Cantor set and linear interpolation on points not in the Cantor set.

This leads to a similar map f : [0, 1] → [0, 1] × [0, 1] where if a = 0.a1a2a3a4 . . .t, f(a) =
(0, a12

a3
2 . . .b , 0.

a2
2
a4
2 . . .b). This map is also continuous and surjective, but not bijective. We’re

now really close to the idea that there could exist a homeomorphism g : [0, 1]→ [0, 1]× [0, 1]. In
particular, this would mean that dimension is not invariant under homeomorphism and that things
like Rm is homeomorphic to Rn for all m,n. Can such a homeomorphism exist? The answer is no,
thankfully.
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Lecture 9 (09-22-2017)

Back To Bases

How can we determine if two bases generate the same topology?

Theorem. Let A and A′ be two topologies on the same underlying set X generated by bases B and
B′, respectively. Then the following are equivalent:

1. A′ is finer than A

2. If x is in X and x is in some base element B ∈ B, then there exists a B′ ∈ B′ such that
x ∈ B′ and B′ ⊂ B.

Proof. Assume that A′ is finer than A and take some x ∈ X and some B ∈ B such that x ∈ B.
Since B is an open set in A, B is also an open set in A′, so B can be written as the union

⋃
B′i for

some {B′i} ⊂ B′. Since x ∈ B, x is in the union of these B′i, so x must be in at least one of the B′i
which by construction is a subset of B.

Now, assume that x ∈ B ∈ B implies the existence of some B′ ∈ B′ with x ∈ B′ ⊂ B. By taking
intersections and small neighborhoods, we can necessarily write any such B as a union of some
collection of B′i. But since we can do this, any open set built from elements of B can be built from
elements of B′, so any open set in A is also open in A′, hence A′ is finer than A.

The Product Topology

Remark. The book uses Rω to denote the set of all sequences in R indexed by the natural numbers
and R∞ to denote those sequences which are eventually all zeros. We’ll do our best to be consistent
with this.

Definition. Given a product of topological spaces
∏
Xα, the box topology is the one with open

sets that can be written as a product
∏
Uα where Ualpha is open in Xα.

Under infinite products, this topology is too fine. Consider the function f : R → Rω, where
f(t) = (t, t, t, . . . ). This function is not continuous from the standard topology to the box topology.
To see this, consider the set (−1, 1)× (−1

2 ,
1
2)× (−−1

3 )× . . . in Rω. This is open in the box topology.
Under f , the inverse image of this set is {0}, which is not open.

Definition. Let πα(x) be the function which sends x in the product to its α coordinate. This
extends to sets by saying that πα(U) is the set of elements y ∈ Xα such that there exists some
x ∈ U where πα(x) = y. The product topology is defined by the base consisting of the sets
π−1
α (Uα) where Uα is a base element (or any open set) in Xα. Equivalently, an open set in the

product topology is one which is a product of open sets in the factor spaces where all but finitely
many are equal to the whole space.
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Lecture 10 (09-25-2017)

Metric Topologies

Definition. A metric on a space X is a function d : X ×X → R+ which satisfies:

1. d(x, y) = 0 if and only if x = y (positivity)

2. d(x, y) = d(y, x) for all x, y (symmetry)

3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

Definition. If X is a space with metric d, and x ∈ X, r > 0, the ball of radius r centered at
x is the set {y|d(x, y) < r}. This is denoted Br(x) (or Bx(r), B(x, r), B(r, x) . . . ).

Definition. The topology generated by a metric is the topology on a metric space generated
by the base of all balls of finite radius centered at all points.

If x is an element of X and x is in some set U which is open in the metric topology, then there is a
sufficiently small r such that Br(x) is entirely contained in U . Hence all points of U are interior.

Let’s note that while such a base does indeed generate the topology we want, it’s not always the
best or smallest base that does so. For example, the set of all balls of rational radius with rational
center generates the standard topology on Rn.

In fact, every metric space is at least first-countable, as we can take a base at a point consisting of
the balls centered at that point of rational radius.

Metric spaces are also Hausdorff. To see this, consider two distinct points x, y. Since they are not
identical, the distance between them is positive, say 3ε. Then Bε(x) and Bε(y) are disjoint open
sets separating x and y.

Definition. The discrete metric is the metric d(x, y) = 0 if x = y and 1 if x 6= y.

Claim. The discrete metric generates the discrete topology.

Proof. To see this, consider the ball B 1
2
(x). This is just the set {x}, and since the singletons are

open, the corresponding topology must be the discrete one.

Claim. The trivial topology is not generated by any metric.

Proof. The trivial topology is not Hausdorff, so it cannot be a metric topology.

The Euclidean metric on Rn, d(x, y) =
√∑

(xi − yi)2 generates the standard topology.

Definition. The `p metric on Rn is d(x, y) = (
∑
|xi − yi|p)

1
p .

Definition. The `∞ metric on Rn is d(x, y) = sup{|xi − yi|}.

Claim. All of the `p metrics generate the same topology on Rn.

Proof. Pick two metrics `p and `q with p < q. We’ll argue that base elements (balls) in one topology
contain base elements of the other. Containment one way is trivial. For a fixed radius r, the `p ball
of radius r sits inside of the `q ball of radius r. To see containment the other way, consider the `q

ball of radius r1 and think of it as an open set in the `p topology. There is some point of maximum
distance from the center, and if we pick some radius r2 less than this, the ball will sit inside of the
`q ball, and we’re done.
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We call `p(Rω) the set of sequences whose `p norm is finite. This forms a vector space.
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Lecture 11 (09-27-2017)

Metrics, Continued

Recall that `p is a proper subset of Rω.

Definition. The `p norm on Rn is d(x, y) = (
∑
|xi|p)

1
p .

Definition. The `∞ norm on Rn is d(x, y) = sup{|xi|}.

If X is a vector space, then a function || · || : X → R is a norm if:

1. ||~x|| ≥ 0 for all x ∈ X with equality if and only if x = ~0

2. ||c~x|| = |c| · ||~x|| for all scalars c and vectors ~x

3. ||~x+ ~y|| ≤ ||~x||+ ||~y|| for all vectors ~x, ~y

Definition. We call such an X a normed vector space.

Metrics do not need to come from norms, but norms induce metrics. A normed vector space is a
metric space, but a metric space need not be a normed vector space.

Consider the function f : R→ R with a norm

||f ||p =

(∫ ∞
−∞
|f(x)|pdx

) 1
p

Definition. This is called the Lp pseudonorm.

Why is this a pseudonorm? There are functions which are non-zero which have zero integral, such as
functions which are zero everywhere except on a set of measure zero. We can resolve this by defining
an equivalence relation ∼ where f ∼ g if and only if ||f − g||p = 0. These equivalence classes form
the vector space of Lp functions on R, denoted Lp(R). On these classes, the Lp pseudonorm || · ||p
is a proper norm. As it turns out, these are actually complete normed vector spaces, i.e. Banach
spaces.

Definition. Given a metric d(x, y), we can create a bounded metric d̄(x, y) by defining d̄(x, y) =
min(d(x, y), 1). It is easy to see that this forms a proper metric.

When do two metrics generate the same topology? Metric balls form a base. If we can show that
balls in one metric contain balls in the other, and vice versa, then the metrics generate the same
topology.

Definition. The Hilbert cube is the set Iω ⊂ Rω. That is, it is the set of all sequences with
entries from the interval [0, 1].

The Hilbert cube has finite volume, but the diagonal has infinite length. That is, the point
(0, 0, 0, . . . ) is infinitely far from the point (1, 1, 1, . . . ) with respect to any `p metric (for finite p).
This space is homeomorphic to the ball of radius 1 in the `∞ metric.

A subbase for the Hilbert cube is the set {π−1
i (U)|U open in [0, 1]}.

Definition. A topological space is metrizable if there exists a metric on X which generates that
topology.
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As an example, the standard topology on Rn is metrizable as it is generated by the `2 metric, for
example.

Since metric spaces are first-countable, first-countability is a necessary condition for a space to be
metrizable.

Example. RR with the product topology is not first-countable, therefore there does not exist a
metric on RR which generates the product topology.

Theorem. A countable product of metric spaces (with the product topology) is metrizable.

Proof. Let X be a metric space with metric d and consider the product XN. Let x = (x1, x2, . . . )

and y = (y1, y2, . . . ) be points in XN. Next, define D(x, y) = sup
{
d̄(xi,yi)

i

}
where d̄ is the bounded

version of d. It’s easy to see that D is a proper metric.

Under D, the ball of radius r centered at x is

Br(x) = {y ∈ XN|D(x, y) < r}

=
{
y ∈ XN|d̄(x1, y1) < r, d̄(x2, y2) < 2r, d̄(x3, y3) < 3r, . . .

}
Since eventually nr becomes larger than 1, everything beyond the nth point must be inside the
ball. Thus, only finitely many (xi, yi) need to be checked, so these balls look like the product of
finitely many open balls in X and infinitely many copies of X itself, which is a base for the product
topology.

Last edited
2019-03-08

Math 500 - Topology and Geometry Page 21
Lecture 11



Lecture 12 (09-29-2017)

Metrics, Continued, Continued

The Fourier Transform

If D ⊂ Rn is open, we can define Lp(D) =
{
f : D → R|

(∫
D |f(x)|pdx

) 1
p <∞

}
/∼, the set of

functions whose Lp norm over D is finite modulo the usual equivalence relation where f and g are
equivalent if the Lp integral of f − g is zero.

Recall the definitions of `p and `∞,

`p =

{
(x1, x2, . . . )|

(∑
|xi|p

) 1
p
<∞

}
`∞ = {(x1, x2, . . . )| sup |xi| <∞}

the set of sequences in R with bounded p-norm and bounded maximal element, respectively.

These `p spaces are normed vector spaces (actually, metric spaces). We’ll take this on faith because
it’s not difficult, but rather time consuming, to prove the triangle inequality holds here.

Definition. The Fourier Transform is defined as the following:

Let I denote the closed interval [−1, 1], and consider L2(I), the set of square-integrable functions
(modulo equivalence) on I. If a function f ∈ L2(I), then we can write

f(x) =

∞∑
n=−∞

ane
iπnx

and

an =

∫ 1

−1
f(x)eiπnxdx

This defines a map F : L2(I)→ R∞ where f
F7−→ (. . . , a−2, a−1, a0, a1, a2, . . . ). It turns out that F

is an injective linear map. Parseval’s Theorem states that if f ∈ L2(I) and {ai}∞1 ∈ R∞, is the
Fourier transform of f , then

(∫
I
|f(x)|2dx

) 1
2

=

( ∞∑
−∞
|an|2

) 1
2

Thus F is an isometric linear injection. We can also show surjectivity by reversing the construction,
so F defines an isometric isomorphism between `2 and L2(I).

Convergent Sequences

Definition. If X is a set, then a sequence of points in X is an ordered list (x1, x2, x3, . . . ) such
that each xi ∈ X.
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Definition. A point x ∈ X is a cluster point of a sequence S = (x1, x2, . . . ) if x ∈
∞⋂
N=1

⋃
i≥N
{xi}.

That is, x is in the closure of every tail of S.

Definition. A point x ∈ X is a limit point of S = (x1, x2, . . . ) if x ∈
⋂
n⊂N

⋃
i∈n
{xi} where n ⊂ N is

infinite. That is, x is a limit point if all infinite subsequences of S have x in their closure.

Example. Take S = (1,−1, 1,−1, . . . ) to be a sequence in R. Every tail of this sequence have
all elements in {−1, 1}, and this is just its own closure, so the cluster points are −1 and 1. This
sequence has no limit points, however. We can pick infinite subsequences which look like (1, 1, 1, . . . )
and (−1,−1,−1, . . . ), and (−1, 1,−1, 1, . . . ), and the intersection of the sets {−1} ∩ {1},∩{−1, 1}
is empty.

Example. Consider the line with a double point, R−{0}∪{01, 02} and the sequence S = (1, 1
2 ,

1
3 , . . . ).

The limit points of S are 01 and 02. To see this, observe that every open set around either 01 or
02 contains infinitely many points in the sequence, hence 01 and 02 are both in the closure of the
intersection of all infinite subsequences.

Theorem. If a topological space X is Hausdorff, then the set of limit points of any sequence of
points in X has at most one element.

Proof. Suppose, for the sake of contradiction, that X is Hausdorff and x 6= y are both limits of
a sequence S = (x1, x2, x3, . . . ). Since X is Hausdorff, we can find disjoint open sets Ux and Uy
which separate x and y. Since x and y are limit points and Ux and Uy are neighborhoods of x and
y, infinitely many points of the sequence lie in both Ux and Uy. Since we assumed that the set of
limit points is non-empty, this implies the intersection of Ux and Uy is non-empty, contradicting
the assumption that they are disjoint. Hence a sequence cannot have more than one limit point in
a Hausdorff space.

Definition. Given A ⊆ X, a point x is in the sequential closure of A if there exists a sequence
S in A such that x is a limit point of S.

Theorem. If x is in the sequential closure of A ⊆ X, then x ∈ A. The converse is true if we add
the condition that X is first-countable, but we will not show this now.

Proof. Take A ⊆ X and S a sequence in A, and assume that x is a limit point of S. Then by
definition, x ∈

⋃
xi∈T
{xi} for some subsequence T . So x ∈

⋃
xi∈T
{xi} ⊂

⋃
x∈A
{x} = A, and we are

done.
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Lecture 13 (10-02-2017)

Topological Groups

We will look at some topological properties of matrix groups. Throughout, we will assume everything
happens with respect to some fixed basis.

Definition. The group O(n) is the set of rigid transformations of n-dimensional Euclidean space
which leaves the origin fixed. That is, A ∈ O(n) if and only if for any ~x, ~y ∈ Rn, 〈~x, ~x〉 = 〈A~x,A~x〉,
where 〈·, ·〉 is the standard Euclidean inner product.

These matrices all have determinant ±1, and this holds with respect to every basis.

Definition. The group SO(n) is the subset of O(n) of n× n matrices with determinant +1.

We’ll observe that O(1) = {−1, 1} = C2 and SO(1) = {1} is the trivial group.

SO(2) is infinite, and can be thought of as the set of 2×2 rotation matrices SO(2) =

{(
cos θ − sin θ
sin θ cos θ

)
|θ ∈ R

}
Definition. A topological group X is a set X with a topology and a group structure such that
the group operation ◦ : X ×X → X is a continuous function.

Topologically, we can think of SO(2) as the unit circle in R4.

The group SO(3) is harder to write down, but it is the set of 3× 3 matrices with determinant 1
(equivalently, the 3x3 matrices A such that AAT = I).

SO(3) is generated by three one-parameter subgroups, which are copies of SO(2) each fixing a
dimension:

Xθ =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 corresponds to rotation about the x-axis

Yθ =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 corresponds to rotation about the y-axis

Zθ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 corresponds to rotation about the z-axis

thus SO(3) = {Xθ1 · Yθ2 · Zθ3 |θ1, θ2, θ3 ∈ R} ⊂ R9.

Since multiplication in R9 is a continuous function, matrix multiplication in SO(3) is as well, so
it is a topological group as well. There is a homeomorphism between SO(3) and RP 3, the real
projective plane of dimension 3. Thus, SO(3) ' S3/antipodal map

Back to Sequences

Lemma. The Sequence Lemma: If A ⊂ X and (x1, x2, x3 . . . ) is a sequence in A with x as a limit
point, then x ∈ A (we proved this last time). Additionally, if X is a first-countable space and
A ⊂ X, then x ∈ A implies there exists a sequence in A with x as a limit point.
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Proof. Let {Bi} be a countable basis at x. Because x ∈ A, we have that Bi ∩ A 6= ∅, so there
is at least one point in Bi ∩ A for all Bi. For each, take one such point. This defines a sequence
(x1, x2, x3, . . . ) in A. By the definition of convergence, a sequence converges to x of x is in the
closure of every subsequence.

Take U to be an open set containing x. Then there exists some base element BN ⊂ U but by
construction, xi ∈ BN for all i ≥ N , so BN contains every infinite subsequence, so U also does.
Since U is an open set around x which has infinite intersection with any subsequence, x is a limit
point of the sequence.

Definition. A function f : X → Y is sequentially continuous if whenever S = (x1, x2, x3, . . . )
is a sequence in X and x is a limit point of S, then the sequence T = (f(x1), f(x2), f(x3), . . . ) has
(at least) f(x) as a limit point.

Theorem. If f : X → Y is continuous, then f is sequentially continuous.

Proof. Take S = (x1, x2, x3, . . . ) to be a sequence in X with limit point x and let y = f(x). Take
U to be an open neighborhood of y in Y .

By continuity, f−1(U) is an open neighborhood of x, and since x is a limit point of S, the tails of
all subsequences of S are in f−1(U), so the image of the tails of all subsequences is in the image U .
Therefore, y is a limit point of the sequence (f(x1), f(x2), f(x3), . . . ), as desired.

Corollary. By this theorem and the Sequence Lemma, we have that if X is first-countable, then
sequential continuity implies continuity.

Corollary. In a metric space, continuity, sequential continuity, and ε − δ continuity are all
equivalent.
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Lecture 14 (10-04-2017)

More Topological Groups

We have from before that SO(3) ' RP 3 ' S3/antipodal map.

Definition. The groups U(n), SU(n) are defined analogously to O(n) and SO(n), except that
these are rigid transformations of complex space Cn. In Cn, we define rigidity with respect to the
Hermitian inner product 〈~v,~v〉 = ~vT ~w.

SU(n) is the subset of U(n) with determinant 1.

We have that SO(2) ' S1, but also that U(1) =
{
eiθ|θ ∈ R

}
' S2. This leads to a natural group

homomorphism and topological homeomorphism eiθ 7→
(

cos θ − sin θ
sin θ cos θ

)
With a little bit of work, we can show that SU(2) ' S3.

Back to Continuity

For the next section, we’ll find the following characterization of continuity useful.

Theorem. The following are equivalent: Let f : X → Y be a function. Then f is continuous if
and only if:

1. f−1(U) ⊂ X is open whenever U ⊂ Y is open.

2. f−1(K) ⊂ X is closed whenever K ⊂ Y is closed.

3. f(A) ⊂ f(A) for any A ⊂ X.

Proof. The first is our ordinary characterization of continuity and showing equivalence to the
second is a simple exercise in taking set complements. We’ll use these to show that f is continuous
if and only if f(A) ⊂ f(A) for any A ⊂ X.

Take y ∈ f(A). Suppose, for the sake of contradiction, that y /∈ f(A), there exists an open set
Uy such that y ∈ Uy and Uy ∩ f(A) = ∅. But we have that f−1(Uy) is an open set in X, and it
intersects A non-trivially, as in particular A and f−1(Uy) both contain an x such that f(x) = y.

Therefore y ∈ f(A), contradicting our assumption.

Now, suppose that f(A) ⊆ f(A), and take K ⊂ Y to be closed. We will show that f−1(K) must be
closed, meaning f is continuous. Let A = f−1(K). Then we have f(A) ⊂ f(A) by assumption, and
by definition, f(A) = f(f−1(K)) = K = K, since K is closed. Additionally, f(f−1(K)) ⊆ K. If
x ∈ f−1(K), then f(x) ∈ K, so x ∈ f−1(K) and because f−1(K) = f−1(K), we have that inverse
images are closed, and we are done.

Theorem. If f : X → Y is sequentially continuous and X is first-countable, then f is continuous.

Proof. Take A ⊂ X. Since X is first-countable, the sequential closure of A is A. Take x ∈ A. Then
there exists a sequence S = (x1, x2, x3, . . . ) in A such that x is a limit point of S.
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Since f is sequentially continuous, y = f(x) is a limit point of the sequence (f(x1), f(x2), f(x3), . . . ).
But this is a sequence in f(A), and since x is in the sequential closure, and therefore the closure of
A, y is in the closure of f(A). Thus f(A) ⊆ (f(A)), and we are done.

Last edited
2019-03-08

Math 500 - Topology and Geometry Page 27
Lecture 14



Lecture 15 (10-06-2017)

The Order Topology

Given an ordered set X with a binary relation < such that for all x, y, z ∈ X with x 6= y, we have
that

1. x 6< x

2. x < y or y < x

3. If x < y and y < z, then x < z

Definition. The order topology on X is defined to be the topology generated by the base of all
open intervals. That is, if a < b, then {x|a < x < b} is a base element.

We’ll observe that in R, this is the standard topology.

Definition. If X is an ordered set and Y =
n∏
1
Xi is a finite product of copies of X, then Y

inherits an ordering called the dictionary or lexicographic order, where (x1, x2, x3, . . . , xn) <
(y1, y2, y3, . . . , yn) if and only if xi = yi in the first k − 1 positions and xk < yk.

In R2 with the order topology, open sets looks like open vertical strips with two open rays adjoined

Figure 4: An example of an open interval in the order topology on R2

Convergence in Uncountable Product Spaces

On RI , the set of functions I → R, we have three topologies: the product, the uniform, and the box
topologies. We also have that while the uniform topology is metrizable (clearly, as it comes from a
metric), the box and product topologies are not.

Given a sequence {fi} ⊂ RI :

The sequence {fi} converges in the product topology if and only if it converges pointwise.

The sequence {fi} converges in the uniform topology if and only if it converges uniformly, in the
analytic sense. That is, given ε > 0, there exists an n ∈ N such that for all i > n, |fi(x)− f(x)| < ε
everywhere.

Last edited
2019-03-08

Math 500 - Topology and Geometry Page 28
Lecture 15



The sequence {fi} converges in the box topology if and only if it converges pointwise and there
exists an n ∈ N such that for all i > n, fi is constant everywhere except a finite set.

Theorem. (Weierstrass) If {fi} is a sequence of continuous functions which converges to a function
f in the uniform topology, then the limit f is also a continuous function.

Proof. Take x, y ∈ I, and look at |f(x) − f(y)|. Let ε > 0 be given. By the triangle inequality,
|f(x)− f(y)| ≤ |fi(x)− f(x)|+ |fi(x)− fi(y)|+ |fi(y)− f(y)|. By uniform convergence, there exists
an n ∈ N such that |fi(x)−f(x)| and |fi(y)−f(y)| are each less than ε

3 . Since each fi is continuous,
there exists a δ > 0 such that |x− y| < δ implies |fn(x)− fn(y)| < ε

3 .

Thus, whenever |x− y| < δ, we have that |f(x)− f(y)| ≤ |fn(x)− f(x)|+ |fn(x)− fn(y)|+ |fn(y)−
f(y)| ≤ ε

3 + ε
3 + ε

3 = ε, hence f is continuous.

Definition. A topological space is connected if it cannot be written as the union of two (non-
empty) disjoint open sets.

Definition. A topological space is disconnected if there exist open sets A,B such that X = A∪B
and A ∩B = ∅.

Theorem. A topological space X is connected if and only if ∅ and X are the only sets which are
both closed and open in X.

Proof. If there exists some non-empty set K which is both open and closed, the the complement of
K is also both closed and open, so X = K ∪X −K is a way to write X as the union of two disjoint
open sets. Thus X is connected if and only if the only such K is X itself.

Definition. A connected component of a topological space X is a set which is both closed and
open in X.

A topological space can be decomposed into connected components.

Theorem. Let ∼ denote the relation x ∼ y if and only if there is a connected open set U
containing x and y. Then ∼ is a proper equivalence relation and the set {x|x ∼ y} is an equivalent
characterization of the connected component of y.

Corollary. If the above equivalence relation partitions X into exactly one class, X is connected.

Definition. A topological space X is path connected if for all x, y ∈ X there exists a continuous
function p : [0, 1]→ X such that p(0) = x and p(1) = y.

We can do a similar thing as above to describe path connected components with an equivalence
relation.
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Lecture 16 (10-09-2017)

Definition. A topological space X is locally connected at x if every open set U containing x
has the property that there exists a V ⊆ U such that x ∈ V , V is open, and V is connected.

Definition. A topological space is locally path connected at x if every open set U containing x
has the property that there exists a V ⊆ U such that x ∈ V , V is open, and V is path connected.

Example. The topologist’s interval is the subset of R2 defined piecewise as the union of the closed
horizontal segment [−1, 0] along the x-axis, the closed vertical segment [−1, 1] along the y-axis, and
the function y = sin(πx ) on the interval x ∈ (0, 1]. We give this the subspace topology from R2.

Figure 5: The Topologist’s Interval

This space is connected, but not path connected, as the vertical stripes become infinitely close near
zero, so there is no proper path from a point to the left of the origin to a point to the right.

The topologist’s circle is the same thing, but with an arc adjoined from (1, 0) to (−1, 0).

Figure 6: The Topologist’s Circle
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This space is connected and path connected, as we can use the arc to avoid the messiness to the
right of the origin, but it is not locally path connected, as we can still look at small neighborhoods
which look like parallel stripes, and obviously are not path connected.

The subset of R2 defined piecewise as the union of the closed horizontal segment [−1, 0] along the
x-axis and y = x sin(πx ) is locally connected everywhere, but not locally path connected at the
origin.

Figure 7: y = x sinπ/x

Theorem. If a space X is path connected, then it is connected.

Proof. Let X be a path connected topological space. If X is not connected, then there exist open
sets A and B such that A∪B = X, so if we picked an x ∈ A and y ∈ B, then the path between them
would be split. If p is our path function, then one of p−1(A) or p−1(B) is the closed interval [0, a]
or [b, 1], contradiction the assumption that p is continuous. Hence a space being path connected
implies it is also connected.

Theorem. If A and B are non-empty subsets of X (not necessarily closed or open) such that
A ∪B = X, and A ∩B = A ∩B = ∅, then X is not connected.

Proof. We’ll show this by proving that A and B are both closed and open. But this is obvious.
Since A ∪B = X, we know that A ∪B = X. But since A ∩B is empty, A is the complement of B.
Since B is a closed set, A must be open. Symmetrically, B is open. Since A and B are complements
of each other, they must also be closed.

Theorem. If A is a connected subspace of X and B ⊂ X, then if A ⊂ B ⊂ A, B is also connected.

Proof. Suppose U, V are open sets which separate B into disjoint components. We’ll show that
A ∩ U and A ∩ V are non-empty open sets which separate A, contradicting the assumption that A
is connected.

Assume, for the sake of contradiction, that A ∩ U is empty. Since U ∩B is non-empty, we must
have that U ∩Bd(A) (the boundary of A) is non-empty as well. Therefore, there exists a limit point
x of A such that x ∈ U . But by the definition of limit points, U must intersect A non-trivially, as
any open neighborhood around a limit point must. A symmetric argument shows that V also has
non-trivial intersection with A.

But A ∩ U and A ∩ V are open relative to A, and since they separated B, they must therefore
separate A. Therefore, such open sets separating B cannot exist, and B is connected.
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Lecture 17 (10-11-17)

Compactness

Closure is often not a strong enough notion to do what we want. For example, [0, 1] and [0,∞) are
both closed sets, but they are not homeomorphic. What is the qualitative difference between them?

Definition. A space X is sequentially compact if whenever S = (x1, x2, x3, . . . ) is a sequence
in X, S has a convergent subsequence. That is, every sequence has at least one limit point.

Definition. A space X is limit point compact if every infinite set has at least one limit point.

Definition. A space X is compact if whenever {Uα} is a collection of open sets which cover X
(that is,

⋃
{Uα} = X), there exists a finite subset of {Uα} which covers X. The common phrasing

of this is ‘‘Every open cover has a finite subcover.’’

Observe that in the discrete topology, only finite sets are compact, as the open cover of all singletons
for an infinite set clearly has no finite subcover.

Theorem. The set [0,∞) ⊂ R is not compact.

Proof. Consider the cover {Uα = {(i− 2, i+ 2)|i ∈ N}}. This has no finite subcover, as any such
finite subcover has an element corresponding to some maximum i, and no real numbers greater
than i are covered.

Theorem. The set [0, 1] ⊂ R is compact.

Proof. This is an immediate consequence of Heine-Borel, which we will prove later. For now, we
can take it on faith that closed and bounded implies compact in the reals.

Theorem. Compactness is preserved in the forward direction by continuous functions. That is, if
A is a compact set and f a continuous function f : X → Y , f(A) = B is compact.

Proof. Let {Uα} be an open cover of f(A) ⊆ Y and let A ⊆ X be compact. Then f−1({Uα}) is an
open cover of A, as f is continuous. Since A is compact, we can pick a finite subcover from this
open cover. This corresponds to a finite open cover of f(A), as if there is some element not covered,
we must have missed the preimage of it in A, but this cannot happen.

Theorem. Suppose A ⊂ X is a compact subset and let x ∈ X−A be an element of the complement
of A. If X is Hausdorff, then there exist disjoint open sets U and V which separate x from A. That
is, there exists an open set U such that x ∈ U , an open set V such that A ⊆ V , and U ∩ V = ∅.

Proof. Since X is Hausdorff, for each element y of A, we can pick an open set Vy which doesn’t
contain x and a disjoint open set Ux which does contain x. The set of all such Vy form an open
cover of A. Since A is compact, we can pick a finite subcover, guaranteed to miss x. The union of
these is therefore an open set containing A which also misses x. For each of the Vy we picked for
the finite subcover, take the corresponding Ux, and then intersect all of them. Since this is a finite
intersection of open sets, it is open, contains x, and necessarily does not intersect the union of the
Vy and therefore misses all of A.
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Corollary. A being compact implies X−A is open, so A is closed. Therefore, A being compact
implies it must be closed.
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Lecture 18 (10-16-2017)

Compactness: The Definition Gauntlet

Example. The Long Line:

The real line R is the countable union of intervals which look like [a, a+ 1), for a ∈ Z. The long
line is an uncountable union of such intervals of length 1.

The closed long ray is the space [0, 1)× [0, 1) with the order topology. The long line is the one-point
union at (0, 0) of two copies of the closed long ray.

This space is connected, but not path connected. It is not compact, but it is locally compact and
Hausdorff. It is clearly not second-countable (and therefore not separable). It is locally Euclidean.

Definition. A space X is locally compact if for any x ∈ X, there exists an open neighborhood
U of x and a compact set such that x ∈ U ⊂ K.

Definition. A space X is locally Euclidean if for any x ∈ X, there exists a neighborhood of x
homeomorphic to an open set in a Euclidean space.

Definition. A manifold is a topological space which is Hausdorff, second-countable, and locally
Euclidean.

Recall the following definitions:

1. Compact: every open cover has a finite subcover

2. Limit point compact: every infinite set has a limit point

3. Sequentially comapct: every sequence has a convergent subsequence

Theorem. If a space is compact, then it is limit point compact.

Proof. Suppose X is a compact space and assume, for the sake of contradiction, that A ⊂ X is an
infinite set with no limit points. Given some x ∈ A. Since x itself is not a limit point, x /∈ A−{x}.
Since this is a closed set, its complement Ux = X−A−{x} is an open set containing x. Also, we
know that A is closed, as it has no limit points and therefore no points of closure (all points in the
exterior are interior points of X−A). Then we have that X = (X−A) ∪

⋃
x∈A

Ux is an open cover of

X. Since X is compact, there exists a finite subcover. The finite set of Ux we pick therefore covers
A, but each Ux contains exactly one point in A, so A is a finite set, contradicting the assumption
that A is infinite.

Definition. A space is countably compact if every countable open cover has a finite subcover.
Clearly any set which is compact is also countably compact, and any set which is countably compact
is limit point compact, as we can take our sequence to be one point from each element of the cover.

Definition. A cover {Uα} of a space X is locally finite if, for any x ∈ X, there exists some
neighborhood U of X such that U ∩ Uα is non-empty for only finitely many Uα.

Definition. An open cover {Uβ} of a space X is a refinement of an open cover {Uα} if every Uβ
is a subset of some Uα.
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Definition. A set is paracompact if any open cover has a locally finite refinement. Every compact
space is also paracompact.

Definition. The multiplicity of a cover {Uα} at x is the cardinality of the set {Uα|x ∈ Uα}.

Definition. A space X is metacompact if every open cover has a refinement of finite multiplicity
at every x ∈ X. A space being paracompact implies it is also metacompact.

Definition. A space is σ-compact if it can be written as the countable union of compact subsets.
Any space which is compact is also σ-compact.

Definition. A space is Lindelöf if every open cover has a countable subcover. Any space which
is σ-compact is also Lindelöf.

Closed Sets

Since open and closed sets are complements of each other, many things in topology can be phrased in
terms of closed sets rather than open sets, and often proofs are more straightforward when working
with closed sets.

Theorem. A compact subset of a Hausdorff space is closed. (We proved this last time.)

Theorem. A closed subset of a compact space is compact.

Proof. Take A to be a closed subset of a compact space X. Let {Uα} be an open cover of A. Then
{Uα}∪ (X−A) is an open cover of X. Since X is compact, we can pick a finite subcover and restrict
it to the Uα to get a finite subcover of A, hence A is compact.

Theorem. If f : X → Y is continuous and X is compact, then f(X) ⊆ Y is compact.

Proof. Pick an open cover of f(X). Since f is continuous, the inverse image of each of these open
sets is open in X and they must cover X. Since X is compact, we can pick a finite subcover and
pick the elements of the cover of f(X) which correspond to this finite subcover of X, which must
therefore be a finite open cover of f(X).

Definition. A space X is pseudocompact if every continuous function f : X → R has bounded
image.

Theorem. If f : X → Y is a continuous bijection with X compact and Y Hausdorff, then f is a
homeomorphism.

Proof. We will show that f(A) ⊂ Y is closed whenever A ⊂ X is closed. If A is closed, then A is
compact. Since the continuous image of compact sets is compact, f(A) is compact. Finally, since Y
is Hausdorff, compact sets are closed, so f(A) is closed. Since the forward image of closed sets is
closed, the function f−1 is continuous as well.
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Lecture 19 (10-18-2017)

Compactification

Definition. The compactification of a space A is a set B such that A ∪B is compact, such that
the subspace topology on A inherited from A ∪B is the original topology on A.

Example. Consider the open segment (0, 1) ⊂ R, which we denote Io. This is not a compact set,
and is homeomorphic to R itself.

Io has a 2-point compactification; if we take Io ∪ {0, 1}, we get the closed interval I, which is
compact. I is therefore the 2-point compactification of R.

There is also a 1-point compactification. If we adjoin a point ∗ and wrap the ends of the interval
around to ∗, we get Io ∪ {∗} = S1, the unit circle. This space is compact, and we can think of S1

as the 1-point compactification of R. In fact, the 1-point compactification of Rn is Sn. When we
look at C, which looks like R2, the 1-point compactification is called the Riemann sphere, which
maintains the structure of complex arithmetic.

Where else can we do this? Any compact manifold with a point or a disk missing can be compactified
with a single point. If we take a torus and take a full slice out of it, we get something homeomorphic to
a cylinder with open ends. There are a number of ways to compactify this. A 2-point compactification
looks like pinching off the ends of the cylinder. A 1-point compactification looks like then gluing
these pinched ends to each other. There is also an infinite-point compactification where we just
glue the torus back together.

Theorem. X is a locally compact Hausdorff space if and only if it has a unique 1-point compacti-
fication.

Remark. The idea of locally compact Hausdorff spaces is a slight relaxation of the idea of a
manifold. Every manifold is locally compact Hausdorff. Here is a quick fact that will be useful in
our proof:

Lemma. If {Kα} is a collection of compact subsets of a Hausdorff space, the intersection
⋃
Kα is

also compact.

Proof. In a Hausdorff space, compact implies closed, and the intersection of closed sets is closed,
and the intersection is a closed subspace of a compact set, and therefore itself compact.

Proof. We’ll begin by noting that if X is already compact, then adjoining a point which is
disconnected from every other point is a completely valid one-point compactification.

Uniqueness. We first prove uniqueness. Suppose Y and Y ′ are both 1-point compactifications of X
via {∗} and {∗′}, respectively. Let f : Y → Y ′ be the identity function on X and ∗ 7→ ∗′. Certainly
f restricted to X is a homeomorphism, so f is a homeomorphism everywhere except at ∗/∗′, so we
show that it is in fact a homeomorphism there as well.

Take K ⊂ Y to be closed. Either ∗ ∈ K or ∗ /∈ K. If it is, then f(K) ⊂ Y ′, but ∗ /∈ Y−K,
so f(Y − K) must be open, as f is a homeomorphism on X. Thus f(K) = Y ′−f(Y−K) is
closed, so f−1 is continuous. A symmetric argument shows that f is also continuous. Thus f is a
homeomorphism.

Last edited
2019-03-08

Math 500 - Topology and Geometry Page 37
Lecture 19



Compact Hausdorff minus a single point is locally compact Hausdorff. Suppose X ⊂ Y , Y is com-
pact Hausdorff, and Y−X = {∗}. We will show that X is Hausdorff.

Clearly X is Hausdorff, as Y is, and removing points doesn’t change that. Take x ∈ X. We want
to show that x ∈ K for some compact K which contains a neighborhood of x. Let U, V be open sets
in Y separating ∗ ∈ U from x ∈ V . Denote L = Y−(U ∪ V ). L is a closed set in Y and therefore
L ∪ V is a closed and therefore compact set which contains x and the neighborhood V .

Locally compact Hausdorff implies existence of 1-point compactification. The following is a proper topology.
Take Y = X ∪ {∗} with the following topology: A set U ⊂ Y is open if and only if:

i U ∩ {∗} = ∅ and U is open in X

ii ∗ ∈ U and Y−U is compact in X

If we can show that this is a proper topology, the proof of the theorem follows immediately.

First, Y and ∅ are open. Y−{∗} has complement ∅ in X, which is compact. Conversely, ∅ is itself
open in X, and is therefore open in this new topology.

We need to show the finite intersection and arbitrary union closure properties.

Let {Aα} be a finite collection of open sets. We can split it into {Aα} = {Uα} ∪ {Vα} where the Uα
do not contain ∗ and the Vα do. Then

⋂
Aα =

⋂
Uα ∩

⋂
Vα. If there are no Uα, then

⋂
Aα =

⋂
Vα

is a finite intersection of compact complements, so it is itself the complement of a finite union of
compact sets, and therefore a compact complement itself, and thus open.

If {Uα} 6= ∅, then
⋂
Uα ∩

⋂
Vα does not contain ∗. But

⋂
Uα is open, as it is the finite intersection

of open sets in X, so Y−
⋂
Uα is closed.

⋂
Vα is the complement of a compact set in X, so Y−

⋂
Vα

is compact in X. Thus the union X−
⋂
Uα ∪ (Y−

⋂
Vα) is a closed set in X, so its complement, is

open in X and therefore Y , but this complement is exactly equal to
⋂
Aα, so we are done.

Next let {Bα} be an arbitrary collection of open sets. We’ll show that
⋃
Bα is also open. Again,

split {Bα} into {Uα} ∪ {Vα} where the Uα do not contain ∗ and the Vα do.
⋃
Uα is open in X, and⋃

Vα is the union of compact complements, so by our lemma, it is itself a compact complement and⋃
Vα−{∗} is open in X.

If
⋃
Uα is empty, then

⋃
Vα is a compact complement and therefore open. If not, then by DeMorgan,

(
⋃
Uα ∪ Vα)C = (

⋃
Uα)C ∩ (

⋃
Vα)C . The first is closed when restricted to X and the second is itself

closed in X. The intersection of closed sets is closed, and the complement of a closed set is open, so⋃
Bα is open and this topology is valid.

This topology, restricted to X, is the original topology on X. If U ⊂ X is open, then it U is open
in Y , so all of the original open sets are still open. If U ⊂ Y and ∗ /∈ U , then U is open in X as
desired. If ∗ ∈ U , then Y−U is compact in X and therefore closed, so U restricted to X is open.

Y = X ∪ {∗} is compact. Let {Uα} be an open cover of Y . Then at least one of the Uα, say U1,
contains ∗. Then

⋃
α 6=1

Uα covers Y−U1 = X−U1 But this is a compact set and therefore {Uα}−{U1}

has a finite subcover of X. Adding back in U1 gives us a finite subcover of Y , thus Y is compact.
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Y is Hausdorff. Since X is Hausdorff, we only need to show that ∗ can be separated from any
other point. Let x be any point in X. Since X is locally compact, there is some compact K and
open neighborhood U such that x ∈ U ⊂ K. Then Y−K is an open set which contains ∗, does not
contain x, and is disjoint from U , thus separating x and ∗.
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Lecture 20 (10-20-2017)

Wrapping Up Compactness

There is a dual notion of compactness.

Definition. If {Cα} is any collection of closed sets, it is said to have the finite intersection
property if any nonempty finite subcollection of {Cα} has nonempty intersection.

Theorem. A space X is compact if and only if every collection of closed sets {Cα} with the finite
intersection property itself has nonempty intersection (i.e.

⋂
Cα 6= ∅).

Proof. First, suppose that {Cα} has the finite intersection property and X is compact. For the
sake of contradiction, suppose that the intersection of all the Cα is empty. We begin by making
the observation that

⋂
Cα = ∅ if and only if X−

⋂
Cα = X, so our assumption is equivalent to

assuming that X = X−
⋂
Cα =

⋃
(X−Cα).

This is a union of open sets which cover X, and by compactness there exists a finite subcover such

that X =
n⋃
i=1

(X−Ci) = X−
n⋂
i=1

Ci. But by the finite intersection property, this intersection isn’t

empty and therefore we don’t actually have a cover of X, a contradiction.

For the other direction, suppose {Uα} is an open cover of X. Thus X =
⋃
Uα and so ∅ =

⋂
(X−Uα).

But taking the contrapositive of what we want to prove, there must be some finite collection of
(X−Uα) with empty intersection. The union of these is therefore a finite open cover of X, so X is
compact.

Theorem. X is countably compact if and only if every countable collection of closed sets with the
finite intersection property has nonempty intersection.

Theorem. If X is sequentially compact, then it is countably compact (via closed sets).

Proof. Suppose X is sequentially compact, and let {Cα} be any collection of closed sets with the
finite intersection property. We will show that

⋃
Cα is non-empty. By the finite intersection

property, any finite intersection of Ci is non-empty, so we can use this to generate a sequence. Fix
an order of the Cα, and let x1 be an element in C1, x2 in C1 ∩C2, and so on. Call the cluster point
of (x1, x2, . . . ) x, which we know to exist by sequential compactness. Now, these intersections are
shrinking, so if x /∈ Ci, then x ∈ X−Ci, which is open, but doesn’t contain xi+1, xi+2, and so on, so
x would not be a limit point. Therefore, x ∈ Ci for all i. Thus x is in the intersection of all of the
Ci, hence the intersection of the Cα is non-empty.
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Lecture 21 (10-25-2017)

Compactness in Metric Spaces

Definition. A metric space is complete if every Cauchy sequence converges to a point in the
space.

Let R∞0 be the set of sequences of reals which eventually terminate in all zeroes. Clearly, R∞0 ⊂ `p
for any p. This space is not complete, however, for any p. In the `p-norm, we can always find a

Cauchy sequence in R∞0 which doesn’t converge, for example ~vi = (1, 1
4

1
p , . . . , 1

i

2
p , 0, 0, . . . ). Clearly

‖~vi‖p ≤
(
π2

6

) 1
p
, and ‖~vi − ~vj‖p ≤

∞∑
min(i,j)

1
k2

, so it is Cauchy, but it doesn’t converge. We can see

that the distance between ~vi and ~v∞ for some ~vi is greater than
∞∑
N+1

1
k2

, where N is the last non-zero

index of ~vi.

Theorem. Each `p space is complete for p ≥ 1. Additionally, if ~x ∈ `p, then there is a sequence of
~xi in R∞0 with lim ~xi = ~x.

Definition. A Banach space is a complete normed vector space.

Each `p for p ≥ 1 is a Banach space.

Theorem. If X is a metric space and X is limit point compact, then X is sequentially compact.

Proof. Let {xi}i∈N be a sequence and denote A =
⋃
{xi}. If A is finite, then we can be certain that

some point is an element of the sequence infinitely often, and is trivially a cluster point, and we’re
done.

If A is infinite, then by limit point compactness, there exists an x ∈ X such that x ∈ A−{x}, and
for any radius ε, the intersection of the ball B(x, ε) with A−{x} is non-empty. Select a subsequence
{xij} ⊂ B(x, 1

j ) ∩ (A−{x}). This is a Cauchy sequence with unique limit x, but by construction,
every ball around x contains a tail of our subsequence, thus X is sequentially compact.

Definition. The Lebesgue number δ of an open cover {Uα} is defined to be

inf
x∈X

sup{δ > 0|B(x, δ) lies entirely within some Uα}

That is, over all of the points in the space, there is some largest ball centered at that point which
fits entirely within an element of the cover. The Lebesgue number is the radius of the smallest of
these largest balls.

Lemma. If X is a metric space and sequentially compact, and {Uα} is an open cover, then the
Lebesgue number of {Uα} is strictly greater than zero.

Proof. Suppose, for the sake of contradiction, that the Lebesgue number δ = 0. Then given any
i, there exists an xi ∈ X such that B(xi,

1
i ) is not contained in any Uα, which defines a sequence

of xi. By sequential compactness (extracting a subsequence if we need to), {xi}i∈N converges to
some x∞ ∈ X, so it must be in some Uα. Then that Uα contains a ball around x∞, so the Lebesgue
number cannot be zero.
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Definition. A cover {Uα} is subordinate to a cover {Vβ} if every Vβ is contained in some Uα.

Theorem. If X is a metric space and X is sequentially compact, then X is compact.

Proof. Let X be a metric space with metric d, and ⇑α} be an open cover of X. Define the function
φ : X → R to be

φ(x) = sup{δ > 0|B(x, δ) lies entirely within some Uα}

That is, φ(x) is the radius of the largest ball centered at x which lies entirely within some element
of the cover. We’ll first show that φ is continuous by showing that φ(x) ≥ φ(y)− d(x, y).

Since φ(x) > 0 for all x, the inequality is only meaningful if d(x, y) < φ(y). Let γ > 0 be some
small real number. Then the ball of radius φ(y)− d(x, y)− γ centered at x lies entirely within the
ball B(y, φ(y)− γ) and therefore within some Uα. As we let γ go to zero, we see the inequality we
wanted to show. Therefore, |φ(x)− φ(y) < d(x, y)|, so φ is continuous.

The Lebesgue number δ of {Uα} is the minimum value attained by φ over all x ∈ X. By our lemma,
this value is strictly greater than zero. Given any x ∈ X, let Vx = B(x, δ). Each of these must be
contained in some Uα and {Vx} forms an open cover of X which is subordinate to {Uα}.

We will construct a finite subcover of {Vx}, then for each element of the finite subcover, pick
a Uα which contains it, thereby constructing a finite subcover of the Uα, as desired. Pick some
x1 ∈ X and take the corresponding Vx1 . Pick an x2 /∈ Vx1 and the corresponding Vx2 . Then pick an
x3 /∈ Vx1 ∪ Vx2 , and so on. If there is some n+ 1 such that we cannot pick an xn+1 /∈

⋃
j = 1nVxj ,

then we have a finite subcover. We need to show that this process always terminates in a finite
number of steps.

To see that it does, suppose, for the sake of contradiction, that it does not. Then the (x1, x2, . . . )
we picked form an infinite sequence in X. But the xi are all at least δ apart, so no subsequence is
Cauchy and therefore no subsequence is convergent. But by sequential compactness, this cannot
happen. Thus the process must terminate and we have our finite subcover, hence X is compact.
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Lecture 22 (10-30-2017)

Separation Axioms

Once again, we have a battery of definitions which we can then use to prove interesting things about
topological space.

Definition. A space X is T1 if given any two points x, y ∈ X with x 6= y, there is an open set U
which contains x but not y and an open set V which contains y but not x.

Definition. A space X is T2 (Hausdorff) if given any two points x, y ∈ X with x 6= y, there is
are disjoint open sets U and V with x ∈ U , y ∈ V .

Definition. A space X is T3 if given any x ∈ X and any closed set A with x /∈ A, there exist
disjoint open sets U and V such that x ∈ U and A ⊂ V .

Definition. A space X is T4 if given any disjoint closed sets A,B, there exist disjoint open sets U
and V such that A ⊂ U , B ⊂ V .

Definition. A space X is T5 if any disjoint sets A and B can be separated by disjoint open sets.

Definition. A space X is T0 if for any x 6= y, there exists an open set U which contains x but not
y or an open set V which contains y but not x.

Definition. A space X is T31
2

if given x ∈ X and A a closed subset of X such that x /∈ A, then

there exists a continuous function f : X → R such that f(x) = 0 and f(A) = {1}.

Definition. A space X is T2
1
2

if it is Hausdorff plus the open sets U and V separating the two

points have disjoint closures. That is, U ∩ V = ∅.

Definition. A space X is regular if it is T3 and T1.

Definition. A space X is normal if it is T4 and T1.

Theorem. If a space X is regular and second-countable, then it is normal.

Proof. Suppose X is regular and second-countable, and let A,B be disjoint closed subsets of X.
By T3 and second-countable, we can find countable collections of open sets {Uxi}i∈N and {Vyj}j∈N
such that the Uxi cover A and are disjoint from B and the Vyj cover B and are disjoint from A.
We now have to worry about some of the Uxi intersecting some of the Vyj .

If this happens, we can fix it by doing the following:

Set U ′1 = U1 − V 1, U ′2 = U2−V1−V 2, and so on, and symmetrically for the Vj . Since an open set
minus a finite union of closed sets is open, each U ′i and V ′j is open, and we have that U ′1 is disjoint
from V ′1 , U ′2 is disjoint from V ′1 and V ′2 , and so on, so by symmetry, our open covers are disjoint
from each other and they still cover A and B, so their unions are disjoint open sets separating the
closed sets A and B.

Lemma. If X is a metric space with metric d, A is a closed subset of X and p is an element of X
with p /∈ A, then we can define d(p,A) = inf{d(p, x)|x ∈ A}, and this is strictly greater than zero.
If A and B are disjoint and compact, then we can define d(A,B) = inf{d(x, y)|x ∈ A, y ∈ B}.

Theorem. If X is a metric space with metric d, then X is normal.
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Proof. Take A and B to be disjoint closed subsets of X. For x ∈ A, let Ux = B(x, 1
4d(x,B)) and

for y ∈ B, let Uy = B(y, 1
4d(y,A)). Clearly every Ux is disjoint from every Uy, so

⋃
Ux ∩

⋃
Uy = ∅.

These covers are disjoint, and the unions are disjoint open sets separating A and B, thus X is
normal.

Theorem. If X is compact and Hausdorff, then X is normal.

Proof. If A,B are disjoint and closed, then they are also disjoint and compact. Since X is Hausdorff,
we can separate any compact set from a point with disjoint open sets. Given x ∈ A, there are
disjoint open sets Ux and Vx such that x ∈ Ux and B ⊂ Vx. Since A ⊂

⋃
x∈A

Ux is an open cover of

a compact set, we can pick a finite subcover of it such that A ⊂
N⋃
i=1

Ui = U . Then let V =
N⋂
i=1

Vi.

Since this is a finite intersection of open sets, V is open and therefore cannot intersect our finite
cover of A, but it is a finite open cover of B. Hence we have disjoint open sets separating A and B,
so X is normal.
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Lecture 23 (11-03-2017)

Lemma (Urysohn). If X is a normal space and A,B ⊂ X are disjoint and closed, they can be
separated by a continuous function f such that f is zero on A and one on B.

Proof. First, fix a denumeration of the rationals in [0, 1], q0, q1, 22 . . . such that q0 = 0 and q1 = 1.
The order of the rest doesn’t matter.

Let U0 be an open set containing A with U0 ∩B = ∅, which can be done because X is normal (in
particular, T3). Let U1 = X−B, which is open and clearly contains U0 and A.

We proceed inductively. Suppose open sets Uqi have been chosen for i = 0, 1, 2, . . . , n. We choose
Uqn+1 as follows. The rational let qi be the largest rational in q0, q1, . . . , qn smaller than qn+1 and
qj the smallest rational in that set larger than qn+1, so we have qi < qn+1 < qj . Choose Uqn+1

such that Uqi ⊂ Uqn+1 and Uqn+1 ⊂ Uqj . Again, normality of X lets us do this, as we can take
complements of the open sets as the closed sets to be separated from A.

We do this for all rationals r, s, t ∈ [0, 1], such that Ur ⊂ Us ⊂ Ut and Ur ⊂ Us and Us ⊂ Ut.

Now, we define our function f using the Uq as ‘level sets’. Let f(x) = inf{q|x ∈ Uq}. By construction,
the function f is defined on any point of X, it is zero on A (actually on U0) and one on B (actually
on U1). We need to prove a couple quick facts.

1. If f(x) > q, then x /∈ Uq.

2. If f(x) < q, then x ∈ Uq.

For each point x ∈ X. let Q(x) = {q|x ∈ Uq}, the set of rationals such that x is in the corresponding
open set. Then f(x) = inf Q(x). By construction, we have that q < q′ if and only if Uq ⊂ Uq′ , so if
q is in Q(x), then q′ > q must be as well.

To see the first fact, observe that if f(x) > q, there is some q′ satisfying q < q′ < f(x), but if
q′ < f(x), then x cannot be in Uq′ , so U ⊂ Uq′ , so x cannot be in Uq′ either.

To see the second fact, consider now f(x) < q. Then there is some q′ ∈ Q(x) such that f(x) < q′ < q,
so q ∈ Q(x) as well, hence x ∈ Uq.

We finally need to show that f is continuous. We’ll do this by taking a subbase of [0, 1] and showing
that the preimage of a subbase element is open. Base elements look like half-open intervals against
the ends of [0, 1], that is, things of the form [0, a) or (b, 1].

First, suppose that f(x) ∈ (b, 1]. Choose a q such that b < q < f(x). We claim that V = X−U q
is a neighborhood of x which f maps into (b, 1]. By the first fact, since f(x) > q, we have x ∈ V ,
so V is properly a neighborhood of x. If y is an element of V , then we must have f(y) ≥ q > b,
otherwise we would run into the second fact, as if f(y) < q, we would have y ∈ Uq ⊂ Uq.

For the inverse image of a set of the form [0, a), we simply suppose that f(x) < a and let q be such
that f(x) < q < b. By the second fact, x ∈ Uq. If y is any point of Uq, then q is in the set Q(y), so
f(y) ≤ q < a, so Uq is mapped into [0, a).

Hence the inverse images of open sets are open, and we have shown f to be continuous. This
completes the proof.
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Lecture 24 (11-06-2017)

Hilbert Spaces

Recall `2 and L2, the normed linear vector spaces of sequences with bounded square norm and
bounded square Lebesgue integral, respectively. Both of these have inner products.

Definition. An inner product is a function 〈·, ·〉 : V × V ∗ → R which satisfies

1. Symmetry: 〈~v, ~w〉 = 〈~w,~v〉

2. Bilinearity: 〈~v, a~w + b~x〉 = a〈~v, ~w〉+ b〈~v, ~x〉 and 〈a~u+ b~v, ~w〉 = a〈~u, ~w〉+ b〈~v, ~w〉

3. Positivity: 〈~v,~v〉 ≥ 0, with equality if and only if ~v = ~0

If (V, 〈·, ·〉) is an inner product space, then V is a normed vector space, with ‖ · ‖ =
√
〈·, ·〉.

On `2, 〈~x, ~x〉 =
∞∑
i=1

xiyi and ‖~x‖ =
√
〈~x, ~x〉, which is equivalent to the norm we had before.

On L2, 〈f, f〉 =
∫
fg. There is a question of whether fg is actually integrable, but it is, by a

generalization of the Schwartz inequality which says that ‖
∫
fg‖ ≤ (

∫
f2)

1
2 (
∫
g2)

1
2 .

Definition. A Hilbert space is a complete inner product space.

Urysohn Metrization

Using Urysohn’s Lemma from last time, we can prove the Urysohn Metrization Theorem:

Theorem (Urysohn Metrization). If X is normal and second-countable, X is metrizable.

Proof. Let {Bα}α∈N be a countable base of X. If Bi ⊂ Bj , there is a Urysohn function f such that
f restricted to Bi is one and f restricted to X−Bj is zero.

Since base elements are open sets, and open sets contain base elements, there is some subset of
the pairs of elements of {Bα} which satisfies the containment. Since {Bα} is countable, there are
countably many such pairs. Fix some order of these pairs and let f1, f2, f3, . . . be the sequence of
corresponding Urysohn functions.

Recall the Hilbert cube H = [0, 1]ω with the product topology is metrizable.

Define a function F : X → H as F(x) = (f1(x), f2(x), f3(x), . . . ). Given any two points x, y ∈ X
with x 6= y, we can find open sets Ux and Uy such that x ∈ Ux, y ∈ Uy, and Ux ∩ Uy = ∅. Given
such open sets, we can find a base element B1 such that x ∈ B1 ⊂ Ux and y /∈ B1. Then there exist
sets V1, V2 such that x ∈ V1, B1 ⊂ V2, and V1 ∩ V2 = ∅, which separate x from X−B1. Then we
can pick a B2 ⊂ V1 with V1 ∩ (X−B1) = ∅ because V1 and V2 are disjoint, so B2 ∩ (X−B1) = ∅,
so B2 ⊂ B1, and we know y /∈ B1.

Thus we have found an open set B1, an open set B2 such that x ∈ B2 ⊂ B1 and B2 ⊂ B1, so there
is a Urysohn function which is one on B2 and zero outside B1. This is one such function in our
sequence.

Our function F : X → H is clearly continuous and injective. To conclude the theorem, we need to
show that it is a homeomorphism. We’ll do this by demonstrating that the forward images of open
sets are open.
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Let U ⊂ X be open, and take t ∈ F(U). We want to show that t is an interior point in F(U)
with respect to the inherited topology on H. We need to find an open set W ⊂ H such that
t ∈W ∩ F(U).

Let p ∈ U such that F(p) = t. We can find a pair of base elements B1 and B2 satisfying p ∈ B1,
p ∈ B2, B2 ⊂ U , B1 ⊂ B2. By construction, one of our Urysohn functions is one on B1 and zero on
X − B2. Consider the projection πi : H → R such that πi(a1, a2, . . . , ai, . . . ) = ai, the projection
onto the ith coordinate. Intuitively, most of F(X) satisfies πi = 0, as most things fall outside of
whatever base element we used to construct the ith Urysohn function.

Let’s look at W = π−1
i ((0, 1]). Then W ∩ F(X) ⊂ F(U) and W ∩ F(X) ⊂ F(B2). We also have

F(B1) ⊂ W because if x ∈ B1, fi(x) = 1, so πi(F(x)) = fi(x) = 1, and F(x) ∈ π−1
i (fi(x)), and

F(x) ∈ π−1
i ({1}) ⊂ π−1

i ((0, 1]).

Thus p ∈ (W ∩F(U)) ⊂ (W ∩F(X)), so p is in an open set F(U), which is what we wanted to show.
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Lecture 25 (11-08-2017)

Tychonoff’s Theorem

Theorem (Tychonoff). If K =
∏
α
Kα is a product of topological spaces Kα and each Kα is compact,

then K is compact (with respect to the product topology).

Fun fact: this theorem is equivalent to the Axiom of Choice (which we will invoke twice in the
proof).

Proof. We’ll use our dual notion of compactness, that a space Ω is compact if and only if any
collection of closed sets {Bβ} with the finite intersection property has nonempty intersection.

Let {Bβ} be such a collection of closed sets with the finite intersection property, such that each
Bβ ⊂ K =

∏
α
Kα. By Zorn’s Lemma (Axiom of Choice #1), there exists a maximal (with respect

to inclusion) collection of sets {Cγ} such that {Bβ} ⊂ {Cγ} and {Cγ} has the finite intersection
property.

Projecting any Cγ to a factor Kα gives us sets {πα(Cγ)}γ , which still have the finite intersection
property in Kα. Since each Kα is compact, there is some point pα ∈

⋂
{πα(Cγ)}. Doing this to

every Kα gives us a collection of points pα, one for each factor. Set p = (pα). We have that p ∈ K
and we claim that p ∈

⋂
{Bβ}.

For each α choose (Axiom of Choice #2) an open set Vα ⊂ Kα. Then {π−1
α (Vα)} forms a subbase

for K with the product topology. Since pα ∈ πα(Cγ) for all γ, we have that Vα ∩ πα(Cγ) 6= ∅. Since
we chose the {Cγ} to be maximal, we have that {π−1

α (Vα)} ⊂ {Cγ}.

Since base elements can be written as finite intersections of subbase elements, every base element
intersects every Bβ. Thus p ∈ Bβ for every β. But the Bβ are already closed, hence they have
nonempty intersection, so p ∈

⋂
{Bβ}, and K is compact.
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Lecture 26 (11-10-2017)

Starting Algebraic Topology

Let’s look at RPn, which as we’ve discussed previously can be realized as Sn/∼, where we quotient
the n-sphere by the antipodal equivalence relation ∼. An equivalent characterization is RPn ∼=
(Rn+1−{0})/∼ where in this case ∼ is the equivalence class of lines, such that x ∼ y if and only if
there exists a real number c such that x = cy.

We can look at RPn as the ball Bn with an antipodal identification on the boundary.

Example. RP0 is the zero-sphere {−1, 1} with both points identified to each other, so RP0 = {0}
is a one-point space.

Example. For RP1, we take S1 and identify antipodal points. This looks like a line segment where
the two endpoints are identified, which we know is a description of S1 again.

Example. For RP2, we take the 2-sphere S2 and perform the identification. The fundamental
domain looks like a hemisphere but with antipodal points on the equator identified. This is no
longer easy to visualize. If we think of loops in RP2 (paths which start and end at the same point),
we can see intuitively that a single loop which passes the boundary can’t be contracted to a point,
but a loop which passes the boundary twice can. This feels like it has a group structure like C2,
and we’ll begin to formalize this concept over the next few weeks.

Definition. A loop is a path with the same start and end point. Formally, a function γ : [0, 1]→ X
such that γ(0) = γ(1).

Definition. If f : [0, 1]→ X is a path, then η : [0, 1]× [0, 1]→ X is a retraction or path homotopy
if η(0, t) = f(t) and if η(s, 0) = f(0), then η(s, 1) = f(1).

We can think of the s parameter as varying the path and the t parameter as varying the position
along the paths. The path for s = 0 is the starting path, s = 0 is the end path, and t = 0, 1 are the
endpoints.

Definition. Two paths f, f̃ are homotopic if there exists a path homotopy η(s, t) such that
η(0, t) = f(t) and η(1, t) = f̃(t).

This relation is symmetric, as we can reverse a path homotopy by swapping η(s, t) with η(1− s, t).

It is also transitive, as if f and f̃ are path homotopic by η(s, t) and f̃ and
˜̃
f are path homotopic by

η′(s, t), we can define a homotopy which is η(2s, t) for s ≤ 1/2 and η′(2s− 1, t) for s > 1/2, which

is a path homotopy between f and
˜̃
f . Hence path homotopy is an equivalence relation.

If f is a path, the equivalence class of f , denoted [f ], is the set of paths homotopic to f . We can
concatenate paths. If there exists a path f from p0 to p1 and a path g from p1 to p2, then the
concatenation h = g ∗ f is a path from p0 to p2, such that h(t) is f(2t) when t ≤ 1/2 and g(2t− 1)
when t > 1/2.

Concatenation of paths is a groupoid operation on the equivalence classes of paths. If we restrict
ourselves to loops, this becomes a proper group operation, as we can concatenate any two loops
without worry.
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We should verify that we have a group, but this is easy. The identity element is the trivial loops,
the one which is the constant function e : [0, 1] → X such that e(t) = x0 for all t. We can see
closure under concatenation pretty easily, and the inverse of a path is the obvious thing, where f(t)
has inverse f(1− t). The composition of loops is also associative, and this is pretty intuitive, but a
little clunky to show formally. It will appear in the homework as an exercise. It basically amounts
to constructing a homotopy such that f ∗ (g ∗ h) and (f ∗ g) ∗ h travel at the same rate, so we ‘slow
down’ the path in the parentheses and ‘speed up’ the third one.

Definition. The fundamental group of a topological space (with respect to a fixed base point
x0) is the group defined by concatenation of loops at x0. We denote it π1(X,x0).
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