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Introduction

Governments, land trusts, and conservation agencies ("regulators") often have
an interest in purchasing or leasing parcels of land owned by private citizens
("landowners") for environmental conservation. For example, the US Department
of Agriculture’s Conservation Reserve Program allows agricultural landowners to
submit to hold their land in conservation instead of farming it in exchange for
monetary payments. Each landowner has some individual opportunity cost for
allowing her parcel of land to be conserved, which can be viewed as the value of
the ’next best’ use of her land. This could be the price at which she could sell
it to a developer or the expected income from agriculture, for example. Under
the assumption that the regulator does not know this private opportunity cost, a
reverse auction is an ideal market structure to handle the asymmetric information.

In general, a reverse auction is a model of an auction where the party which
owns the item being sold also submits the bid and the buyer can accept or reject.
These are most prominently used for contracting of services and are often called
procurement auctions. The landscape auction will be modeled as a first-price
sealed bid reverse auction, which means the landowners will submit their bids in
secrecy and if the regulator accepts a landowner’s bid, he pays an amount equal
to that bid.

Given a landscape where each site has an environmental value known to the
regulator and a profile of bids, it is a relatively simple discrete optimization problem
to select a set of sites to either maximize the total environmental value subject to a
budget constraint, or minimize the total expenditure given a target environmental
value. A more complex problem arises when complementarities from selecting
neighboring sites are considered. Benefits from connectedness in the conserved
landscape include ease of management and habitat space for threatened species,
so a site’s environmental value increases with the number of neighboring sites
also conserved. A model which incorporates these spatial complementarities more
realistically represents the goals of landscape conservation, but is much harder to
solve compared to a model which does not account for these benefits.

At the same time, it may be an oversimplification to assign a fixed price to
each site based solely on the landowner’s opportunity cost of conservation. A
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landowner may not know the exact distribution of the environmental values of her
site, but she may know that the environmental value increases with the number of
neighbors purchased. Therefore, the regulator’s willingness to pay for a given site
may be significantly higher than the landowner’s private valuation. Realistically,
a landowner trying to sell her site would want to extract the largest payment from
the regulator, so the model should incorporate a mechanism for the landowners to
submit rational bids above their private valuations. An extension to this project
can focus on determining an equilibrium bidding strategy.

Existing Work

Stephen Polasky, et.al. take a different approach to solve this problem. They
prove an efficient mechanism based on a Vickery-Clarke-Groves auction to honestly
elicit the private value for each site and provides a subsidy to landowners based on
the net environmental benefit of the conserved landscape. The mechanism forces
honesty by divorcing the payment from the bid, so it is not a first-price model. This
subsidy is independent of the bids, and because the Nash equilibrium in a VCG
auction is to honestly report one’s private value, there is no possibility for strategic
behavior from the bidders (Polasky, et.al. 2014). This mechanism does provide a
method of gathering bids in a way that gives the regulator full information about
the individual private site values, thus removing the information asymmetry on one
side of the market. What is missing from this mechanism is a scalable algorithm
for selecting which sites to purchase. The authors give a numerical example of their
mechanism on a landscape with eight sites in a four-by-two array. After eliciting
the bids from the landowners, the mechanism simply performs an exhaustive search
on all combinations of purchasable sites. Firstly, this approach simply purchases
sites to maximize the net difference between environmental value and total cost
without considering a constraint on the budget or the target value. Secondly,
while the exhaustive search algorithm certainly finds the optimal solution for any
objective function, it is an intractable method for solving problems of arbitrary
size, as the number of candidate solutions is factorial in the number of sites, which
necessitates an algorithm that approximates a solution with minimal error.

A genetic algorithm to solve the landscape optimization problem may be an
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appropriate tool to provide accurate approximations to the true optimal solution in
a much more time- and space- efficient way. Clemens van Dinther’s paper "Agent-
based Simulation for Research in Economics" introduces a framework for deciding
which problems in economics could be solved or have solutions informed by agent-
based simulations, where structures or phenomena are simulated with electronic
agents which make decisions based on predefined rules and possibly learned infor-
mation from the model. Van Dinther suggests that agent-based approaches could
be useful in solving computational problems such as finding Nash equilibria or
optimization. In one section, he outlines an evolutionary approach for a learning
genetic algorithm which is useful for solving problems with quantifiable measure-
ments of "fitness" and where solutions can be easily coded as "genes" (van Dinther,
2008).

The problem of optimization of the landscape satisfies the necessary conditions
for the evolutionary process to solve the problem; because the value of a landscape
is strictly increasing as sites are added to the solution, introducing a budget con-
straint guarantees the existence of a maximum. The fitness of a given solution is
judged solely by the metrics of the environmental value and the cost, and a natural
genetic representation of a solution is a binary matrix, where entry (i,j) is 1 if site
(i,j) is purchased. The algorithm finds a solution by iteratively using the current
generation along with reproductive and mutative rules to create the next gener-
ation. Convergence of solutions will be determined by terminating the algorithm
after some number of generations without improvement in the best solution.

Framing the Problem

Mathematically, the problem we want to solve is the maximization of the total
valuation across all chosen sites such that the total cost of these sites is less than
or equal to some budget constraint, called the value maximization problem. It is
also not unreasonable to consider the expenditure minimization problem, where
we choose sites to minimize the total cost such that the environmental valuation
is greater than or equal to some target value. This project focuses on the value
maximization problem, but it is important to note that these problems are dual
to one another, and by duality, the solution for one should be very close to the
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solution for the other (the discrete nature of the problem results in there being a
gap). That is, if V is the maximum value for budget B, then B should be very
close to the minimum expenditure for target value V .

To solve the problem of landscape optimization, I am using a fabricated land-
scape and tools developed in the Python programming language. While this
project has important consequences for real-world design and implementation of
conservation auctions, the lack of complete data on bidder behavior and land sales
along with the relative infrequency of the auctions makes it infeasible to construct
an econometric model from historical data.

To begin, I constructed a theoretical landscape to be considered in the auction.
The landscape has 225 sites arranged in a 15-by-15 square grid, and each site’s
neighbors are considered to be those sites immediately above, below, left, and
right of it. Therefore, interior sites have four neighbors, edge sites have three,
and corner sites have two. Each landowner has a private valuation for her site
drawn independently from a discrete uniform distribution on [2,12]. Similarly,
the environmental valuations for a site given some number of neighbors already
purchased are a set of five ordered draws from a discrete uniform distribution on
[1,13] 1. That is, if the computer generates the draws {5,2,10,9,6}, that site has
value 2 when none of its neighbors are selected, value 5 when one is selected, 6
when two are selected, 9 when three are selected, and 10 when four are selected.
In this way, both the private and the environmental valuations for each site are
exogenous to the model and both landowners and the regulator must take them
as given.

Where this model builds on previous work is that adding a site to a conserved
landscape may cause significant externalities due to the complementary effects of
selecting neighboring sites. Spatial complementarities are discussed in environ-
mental literature, such as providing species corridors and ease of management,
but may be overlooked in computational models due to the added computational
complexity of including them. Selecting that site not only adds that particular
site’s environmental value to the landscape’s total, but additionally increases the

1The difference in the distributions is to include cases where one or more environmental values
of a site are 1, so the private valuation is greater than the environmental valuation in isolation,
thus forcing reliance on complementarities. The top end of the distribution was shifted so the
means of the two distributions remained equal.
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environmental value of its neighbors already in the landscape. A case of this is
illustrated below:

Suppose the regulator has already purchased Sites W, X, Y, and Z, and three
of each of their neighbors, such that the present environmental values of these
sites are 5, 10, 4, and 5, respectively. If the regulator purchases Site A, the
environmental value of the whole landscape increases by 10, due to the direct
benefit from purchasing Site A when it has four neighbors already in the landscape.
However, purchasing Site A also increases the number of neighbors that Sites W,
X, Y, and Z have to four. Site W’s value increases from 5 to 6, Site X from 10
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to 12, Site Y from 4 to 11, and Site Z from 5 to 10. Therefore, the marginal
value of adding Site A to the landscape is not 10, but 25, which is a natural
maximum willingness-to-pay for the regulator. Therefore, it is entirely possible
that a landowner could sell her site for a price significantly higher than her own
private valuation in a first-price setting. Similarly, it is possible to construct
a scenario where the marginal value of adding a site is always less than that
landowner’s private valuation, which implies that some landowners may never be
able to sell their sites. For example, if in the previous example, the owner of Site
A had agricultural income of 30, she would not sell her site, as the maximum
willingness-to-pay does not exceed her private valuation.

From a game theoretic perspective, it is a difficult question to determine a set
of conditions under which each landowner would or would not sell her site, and
derive an optimal bidding strategy from those results. For the purposes of this
project, which focuses on optimizing the selection of sites given a profile of bids
from the landowners, I take bids as exogenously given, and assume they are equal
to the landowners’ private valuations.

Optimizing the Landscape

Finding the optimal set of sites to purchase given a budget constraint, the
neighbor-conditional valuations, and the bids is a very difficult problem computa-
tionally. Formally, this problem is in the complexity class NP-Hard, which means
that the only way to find a maximum is to examine every possible solution and
save the best one. Additionally, given some solution, the only way to verify it as a
maximum is to exhaustively check every solution for something better2. Given the
computational complexity of the problem, the most efficient algorithm to guaran-
tee a maximum environmental value given a constraint is to exhaustively search
all possibilities and select the best solution. However, due to time and space
constraints, this is not a tractable method for solving the problem on a 15-by-15
landscape, as illustrated in the following two pseudocode algorithms:

2To see that the problem is NP-Hard, consider that this is a 0/1 combinatorial knapsack prob-
lem, which is harder to solve than the non-combinatorial 0/1 knapsack problem. Optimization
of knapsack problems is NP-Hard.
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Algorithm 1 Exhaustive Search Optimization: Space Efficient
1: procedure Optimize(Landscape L, Budget B)
2: b← 0
3: mb ← None
4: for i ∈ [0, 2225] do . loop over all possible solutions
5: Generate the corresponding landscape selection m
6: if value (v) of m > b and cost of m ≤ B then
7: mb ← m
8: b← v . save this better solution

Algorithm 2 Exhaustive Search Optimization: Time Efficient
1: procedure Optimize(Landscape L, Budget B)
2: In Parallel:
3: Generate all 2225 solutions, calculate costs and values
4: Sort the solutions by descending value
5: Discard all solutions with cost > B
6: Return the solution with the highest value

The issue with both of these solutions is in the number of sites. With 225 sites,
there are 2225 (roughly 5∗1067) possible solutions. Even at hundreds of comparisons
per second, the space-efficient solution is entirely intractable. Similarly, the time-
efficient solution would require roughly 1070 bits of memory, which is outside of the
scope of modern computers. While bounds on the maximum number of sites that
can be in a solution given a constraint are easy to calculate and drastically reduce
the number of computations that must be made, the purpose of this project is to
develop a method to approximate an optimal solution regardless of the size of the
landscape.

Formalization of the Model

Because an exhaustive search method is computationally infeasible, it may be
impossible to find the optimal choice of sites given a landscape. Formally, there
is an evaluation function which maps a landscape and a profile of sites to the
associated value and cost of the selection. This is therefore a function
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E : L× {0, 1}N → R2
+,

where domain elements are a landscape and an N-bit binary number (where N is
the number of sites in the landscape) and codomain elements are ordered pairs of
positive real numbers corresponding to a cost and a value.

Trying to unpack this function E reveals the core of why this problem is so
difficult to approach. E exists for all inputs (l,s), where l is a landscape in L

and s is a binary number of appropriate length, E(l, s) is easily computed as
E(l, s) = (

∑
visi,

∑
cisi), where vi is the value of site i as a function of how many

of its neighbors are selected, ci is the cost of site i, and si is the binary selection
variable for site i, as indicated in the input s. Therefore, vi is itself a function of
the sum of sj for site i’s j neighbors, but each of these sj is itself a function of the
original si. Because the valuation of each site is implicitly a function of itself, a
linear programming approach to approximating a solution will not work.

Two observations about E are important to the complexity of this problem. The
first is that, subject to any budget constraint, there exists some selection of sites
that maximizes the environmental value of the landscape. This is a result of the
valuation of the landscape strictly increasing with sites being added. Because there
are a finite number of possible site selection profiles, and the valuations of these
profiles correspond to positive real numbers, this set of valuations has a maximal
element. The second observation is that there is no guarantee of uniqueness to
these solutions. For any landscape and constraint, there may be a multitude of
profiles of sites corresponding to the same maximal valuation. More importantly,
this means that for any attempt to approximate a solution to the constrained
optimization problem, claims about solution strength can only be made regarding
the environmental values for the solutions rather than about a comparison between
the actual sets of sites in the solution, as an approximation can yield a possible
solution with value very close to the true optimum while selecting a vastly different
profile of sites.

There are numerous techniques to approximate solutions to problems that are
otherwise computationally intractable. One very simple approach is a greedy
heuristic. The idea behind a greedy heuristic is that at each iteration, makes
the locally most optimal decision without considering future implications of this
decision. An outline of a greedy approach to the landscape optimization problem
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is as follows:

Algorithm 3 Landscape Optimization: Greedy Heuristic
1: procedure Greedy Heuristic(Landscape L,Budget B)
2: Cost C ← 0
3: Selected sites m← None
4: while C > B do
5: for each site s ∈ L not already in m do
6: Calculate the added value of choosing s

7: Add to m the site with the highest value
8: Cost C ← C + sc . add the cost of the site
9: Return m

This method is both easy to implement and quick to compute, but it may
generate suboptimal solutions. To see that the greedy solution may not be optimal,
consider a case where a landscape has a cluster of sites which each have average
cost and very low environmental value when no neighbors are chosen but very
high value when some neighbors are chosen. Because for all of these sites, the cost
exceeds the value of the site in isolation, the greedy heuristic will never select these
sites, even if they are part of the optimal solution. However, due to the ease of
implementation, a greedy heuristic makes an excellent benchmark against which
to compare other methods of approximation.

Due to the discrete nature of the domain (and solution space) and the non-
linearity of the valuation function, a genetic algorithm is an appropriate tool to
approximate the solution. A genetic algorithm functions metaphorically like a
population of a species propagating over generations. Some factor in the model’s
input takes the role of genes or chromosomes and the fitness of each representative
is determined by the strength of its associated solution. In this model, for a given
landscape, the binary selection input is the ’gene’, and fitness is evaluated by the
environmental value of the solution, subject to the cost constraint. In the repro-
ductive phase, the current generation of solutions is used to inform the creation
of the next generation with some weighting scheme used to bias the creation of
these solutions towards using more of the features from the stronger solutions in
the previous generation.

Because of the strong complementarities between neighboring sites, for any
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landscape and constraint, there are numerous possible selections of sites which
meet that constraint, but may or may not be close to the true optimum. Taking
one of these solutions and iterating a genetic algorithm on it may increase the value
of the solution, but if there is a better solution for a given constraint which contains
a dramatically different set of sites than the one used at the start of the iteration,
it is highly unlikely that the algorithm will ever find that better solution. For this
reason, the algorithm to approximate the solution to the constrained optimal site
selection problem should incorporate a high amount of variance so as to explore a
large number of possible solutions at once.

The Genetic Algorithm

In general, the structure of a genetic algorithm is as follows:

Algorithm 4 Genetic Algorithm: Basic Structure
1: procedure Genetic Optimization
2: create an initial population of solutions
3: while Terminating condition is not met do
4: use the current generation of solutions to inform creation of the next

generation
5: evaluate your best solution against the terminating condition
6: return the best solution

This outline is intentionally vague to highlight the degree of input the designer
has in implementing such an algorithm and its flexibility in being able to be tai-
lored towards a variety of different problems. The following paragraphs describe
the specifics of the genetic algorithm used in this project. The full Python imple-
mentation of the models can be found in the Appendix.

First, generating the initial population is done mostly randomly with a little bit
of guidance. Since there are so many possible solutions in the space, the first step
is to find an upper bound on the number of sites in the solution with respect to
the constraint. To do this, consider iteratively purchasing the sites with the lowest
cost until the constraint is reached. Regardless of the value, this solution contains
the absolute maximum number of sites of any solution given that constraint, so
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call this number of sites M . Given a landscape and a constraint, the following
sub-algorithm is used to generate the initial population of solutions:

Algorithm 5 Genetic Algorithm: Generating the Initial Population
1: procedure Random Generation(Landscape L, Budget B)
2: calculate an upper bound M on the number of sites in a solution given B
3: for each n ∈ [0,M ] do
4: generate 50 random solutions with n sites
5: discard solutions with cost exceeding B

6: order all solutions by value
7: use the 600 best solutions as the initial population

Next, these solutions must iteratively be used to inform the creation of the next
generation of solutions. The implementation uses several techniques to accomplish
this in order to achieve a high amount of variance across potential solutions. The
first and simplest method is to carry over the best 100 solutions from the previous
generation. This step ensures a constantly improving core of solutions being carried
from one generation to the next. Additionally, some more random solutions are
created and added to the next generation. Throughout the process, all steps will be
taken under the assumption that infeasible solutions are discarded upon generation
and lists of solutions are ordered by descending value.

The genetic process uses four subprocesses to create the next generation of
solutions, three of which are described in detail below. The first technique is a
mutagenic step. The idea behind this is to make small adjustments to solutions in
the current generation to create solutions in the next generation. Solutions created
by this process should look similar but not identical to members of the current
generation with preference towards the strongest solutions. The second process is
a probabilistic generation where the aggregated relative frequencies of each site’s
occurrence in the best solutions from the current generation are used to inform
the creation of the next generation. As there is no weighting by solution strength,
solutions created with this method should be random variations on a composite
version of the best solutions from the current generation. Because of the way the
random numbers are drawn, the relative frequencies of occurrence for the sites
in the solutions created with this method should match those from the current
generation. The third method is a two-step greedy adjustment where solutions
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are slightly improved by greedily adding the best unselected site and removing
the worst selected one. The final method is more random generation, which helps
increase variety among candidate solutions.

The first technique to generate new solutions using the information from the
current generation is a probabilistic bit switch. Looking at each solution as a binary
matrix where entries of 0 and 1 represent the corresponding site being unchosen
and chosen, respectively, an old solution can inform a new one by choosing a small
number of entries and flipping the bit in that location. In order to bias using
stronger solutions to create the next generation, a discretized beta distribution is
used to weight the random selection process to favor those stronger solutions. The
outline of the algorithm is as follows:

Algorithm 6 Genetic Algorithm: Bit-Switch Mutation
1: procedure Bit Switching(Landscape L, Budget B, Solution set P )
2: initialize P ∗ to be the next generation of solutions
3: for n ∈ [0, 125] do
4: draw a value i from a discretized beta distribution
5: index into m = P [i] . distribution favors stronger solutions
6: for each entry e ∈ m do
7: with probability .08, swap the state of the e . {0↔ 1}
8: add the solution to P ∗

9: return P ∗

The advantage to this technique is that it creates the probability for the creation
of any arbitrary solution. In particular, given an initial solution, the process
generates a specific target solution with probability .96A ∗ .08B, where A is the
number of corresponding pairs of sites that are either both chosen or both not
chosen in each solution and B is the number of sites where the status differs
between the two solutions. This technique therefore draws solutions from a roughly
normal distribution centered at the seed solution, but when combined with the beta
distribution used to pick each seed, the distribution of solutions generated in this
way will be skewed towards the stronger solutions from the previous generation.

The second technique is a probabilistic generation of new solutions where the
probability of each site’s inclusion is equal to the proportion of the best 125 solu-
tions it occurs in. For example, a site which is included in every one of the top
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125 solutions will be included in every solution generated by this method while a
site that occurs in 13 of 125 should only be included in approximately 10 percent
of these solutions. The following algorithm describes this process:

Algorithm 7 Genetic Algorithm: Probabilistic Generation
1: procedure Probabilistic(Landscape L, Budget B, Solution set P )
2: initialize a 15× 15 matrix m to all zeroes
3: initialize P ∗ to be the next generation of solutions
4: for each site s ∈ L do
5: calculate the proportion r of the top 125 solutions in P that site s is

selected
6: store r in the corresponding entry of m
7: for n ∈ [0, 125] do
8: generate a 15× 15 matrix m∗ with each entry drawn from [0,1]
9: for each entry e in m∗ do
10: if the corresponding entry in m is less than e then
11: set e to 1
12: else
13: set e to 0
14: add m∗ to P ∗

15: return P ∗

While the first technique uses a beta draw to skew the distribution in favor of
the stronger solutions, this method applies equal weight to each of the 125 selected
members from the current generation, so the distribution of solutions generated in
this way should be centered about the ’average’ solution of this subset.

The final process used to generate the next generation of solutions is a greedy
adjustment on the top 25 solutions from the current generation. The problem with
using a greedy heuristic from the outset was that the distribution of values from
the spatial complementarities may prevent a cluster of high value sites from being
chosen due to having low value if chosen in isolation. Applying a greedy heuristic
to an existing core solution reduces the probability of this occurring, as there may
already be member sites from these clusters in the solution, so the one-step greedy
algorithm does indeed add them to the solution. In this greedy update, the top 25
solutions are adjusted by removing the lowest value site currently in the solution
and adding the highest value site not in the solution. The following algorithm
describes this process:
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Algorithm 8 Genetic Algorithm: Greedy Update
1: procedure Greedy(Landscape L, Budget B, Solution set P )
2: for each of the top 25 solutions in P do
3: repeatedly add the highest and remove the lowest value sites

This greedy update process is very effective at achieving a stable solution, par-
ticularly in conjunction with the high variance of the bit switch and probabilistic
generation processes. One criterion for terminating a genetic algorithm is to stop
when there is no improvement in the best solutions from generation to generation.
Using the previously described sub-algorithms, the greedy update steps allows the
algorithm to converge to a solution in only about four generations, which is impor-
tant, due to the relative computational cost of the greedy update in comparison
with the various randomized features. Detailed results are discussed in the next
section.

Results and Discussion of the Model

To gather comparative results, a fixed landscape was randomly generated and
the processes described above were used to generate both greedy and optimized
solutions for cost constraints of 25 to 1100 in increments of 25, yielding 44 observa-
tions. From an intuitive perspective, economic and mathematical theory informs a
few predictions about the results of the model, which the data can either reaffirm
or challenge. First, we should expect that within the greedy solutions and approx-
imated optimal solutions the value of the landscapes should be strictly increasing
with the cost constraint because each site has positive valuation. Additionally,
we expect for both models that the rate of increase of value (an estimate of the
derivative of value with respect to cost) should be higher for lower budgets and
decrease as the budget constraint rises. This intuitively rises from the idea that
both the greedy algorithm and optimized solution should add sites of high value
early in the process leaving lower value sites to be added in settings where the bud-
get constraint is higher. Economically, this would indicate diminishing marginal
benefits to purchasing sites optimally. Underneath all of this is the expectation
that the optimization process should provide significantly better solutions than the
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greedy algorithm for low budget constraints and there to be not a large difference
for high budget constraints.

The following table contains the results of one full run of the model:
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Constraint Greedy Value Greedy Cost Solved Value Solved Cost
25 53 24 56 24
50 101 46 129 49
75 143 72 185 75
100 193 98 229 99
125 229 124 259 120
150 282 147 318 150
175 321 171 369 172
200 378 200 416 196
225 437 225 467 225
250 471 242 501 241
275 532 271 555 265
300 587 300 589 291
325 634 325 650 322
350 678 347 692 348
375 721 373 721 368
400 753 398 788 399
425 791 423 837 417
450 845 446 891 449
475 891 469 936 474
500 937 495 962 495
525 982 525 980 524
550 1014 549 1044 543
575 1044 573 1080 565
600 1081 593 1117 599
625 1121 620 1147 620
650 1169 649 1194 650
675 1212 674 1243 668
700 1269 698 1275 700
725 1309 725 1297 723
750 1350 750 1351 746
775 1379 771 1404 775
800 1417 798 1429 800
825 1439 818 1466 824
850 1484 848 1506 849
875 1519 870 1529 875
900 1558 899 1575 898
925 1586 921 1621 921
950 1626 947 1648 948
975 1673 973 1684 973
1000 1718 999 1728 998
1025 1754 1016 1764 1024
1050 1801 1050 1807 1046
1075 1828 1072 1833 1073
1100 1859 1099 1861 1099
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The data affirms the first prediction; for both the greedy and optimized solu-
tions, the value is strictly increasing with the budget constraint. The following
two charts plot the value on the vertical axis against the constraint on the hori-
zontal axis. The first chart covers the whole model while the second is restricted
to solutions for constraints less than or equal to 300.
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Both these tables illustrate and confirm the first theoretical prediction that
value is strictly increasing with the constraint for both techniques. It also demon-
strates evidence that the approximation algorithm does a better job outperforming
the greedy algorithm at low budget constraints than at high budget constraints.
To aid in examining the third theoretical prediction, the following graph charts a
discrete derivative against the constraint.
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While the trajectory of the data seems relatively random, there is a general
downward trend, suggesting weak evidence for diminishing marginal benefits from
higher budget constraints. One quality of the model to note here is that because
the landscape has a fixed number of sites, there does exist a maximum possible
attainable value, which corresponds with the cost of purchasing every site in the
system. At this point, the marginal returns must be zero.

Both the greedy solution, which by definition builds on a solution for a lower
constraint, and the solved solution, which by its construction optimizes against
each constraint independent of lower solutions, exhibit the high variance in the
approximated derivative. This suggests that this variation is an artifact of the
complexity and discreteness of the solution space rather than there truly not being
diminishing marginal benefits from increased budgets. One natural way to confirm
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or reject this notion would be to solve a wide variety of these models and determine
if the average trend shows diminishing returns.

Another observation is that while the optimized solution does outperform the
greedy algorithm, in a few instances by over 15 percent, the first graph shows them
trending very close together, which raises the question of whether engaging in the
design and implementation of the optimizer is worth the benefits. In general, this
obviously depends on the cost and benefits of undertaking the action and cannot
be universally determined based on the results of the fictional landscape discussed
in this project. However, the relative success of the greedy algorithm compared to
the optimizer may also be a result of assumptions about which party has access
to various pieces of information. For example, the greedy algorithm depends on
the regulator knowing, for every site, how the addition of that site affects the
total landscape value. Restricting this information would significantly impede the
greedy algorithm’s ability to find strong solutions and may result in the solver
doing significantly better than the greedy heuristic at a wider range of constraints.

An aspect of these auctions that this model leaves out is the behavior of the
bidder. The models presented examined optimal selection given some exogenously
determined price assigned to each site. In reality, each landowner wants to submit
a bid to maximize expected profits from potentially selling her site under the
restriction that she will not bid below a predetermined private valuation for her
land. An interesting extension to this project would be to examine how the bidders
should behave in this setting. The auction can be modeled as a one-shot sequential
game where landowners simultaneously and independently select a bid and the
regulator observes these bids and decides which sites to purchase. The problem
here is determining how landowners can use the limited information available to
them to make their own optimal choice.

Conclusion

Overall, examining this optimization in the context of spatial complementar-
ities better reflects environmental goals in conservation but also adds layers of
computational complexity to solving a theoretical version of the model. The mod-
els presented here show that a simple to implement greedy algorithm which in-
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corporates cost and valuation information performs significantly better than an
uninformed greedy model and nearly as well as the genetic solver. Due to the
strong spatial complementarities, diminishing marginal returns to increasing the
budget are not strong, and the marginal return from one increased unit of spending
is more than one unit of environmental value at most levels, particularly for low
constraints. The policy implications of these results are that there may be signifi-
cant benefits from increasing spending on conserving sites, particularly when the
budget constraint only allows purchasing of few sites. Additionally, these spatial
complementarities should be factored into decision models for real-world appli-
cations due to the direct and indirect value effects from potentially conserving
neighboring sites.

One aspect of such a selection model that was largely ignored in this project
but presents interesting challenges to optimization from both a computational and
a mechanism design perspective is combinatorial bidding and buying. The model
and algorithm in this project are founded on an assumption that each landowner
independently generates a bid for her site and the regulator can select which bids
to accept and which to not. Due to the spatial complementarities which may
cause some sites to have very low value in isolation but very high value when some
number of its neighbors are selected, it may be in the regulator’s best interest to
be able to accept bids on bundles of sites as a way of ensuring that the spatial
complementarities are captured. Exploring such an optimization problem would
be a fascinating extension to this paper.

An additional facet of this problem that could be explored in an extension to
this project is the role of strategic behavior for the bidders in this model. Here
we treated the bids as being generated exogenously and the regulator took them
as given. Hailu and Schilizzi (2004) explore a computational model where a land-
scape auction is iterated and bidders adjust their bids over time to try to capture
as much surplus as possible. Extending their model to a setting with spatial com-
plementarities and combinatorial bidding could better inform mechanism designers
as to how individuals behave at these kinds of auctions.
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Appendix: Code

\singlespacing
#site.py

’’’
Created on Sep 17, 2015

@author: zachary
’’’

import randomSeeded
import copy

def cloneSite(s):
newSite = Site(s.loc,s.index)
newSite.values = s.values[:]
newSite.curVal = newSite.values[0]
newSite.privateVal = copy.deepcopy(s.privateVal)
newSite.nbrs = []

return newSite

class Site:
’’’
classdocs
’’’

def __init__(self, loc, idx):
’’’
Constructor
’’’

self.loc = loc
self.index = idx
self.pastBids = []
self.pastSales = []
self.sold = False
self.lastBid = None
self.curVal = None
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self.picked = False

self.varVal = 0
self.selVar = None
self.varCost = 0

self.values = []

for v in range(5):
self.values.append(randomSeeded.random.randint(1,13))

self.values.sort()
self.curVal = self.values[0]
for i in range(4):
self.values[i+1] = self.curVal

self.privateVal = randomSeeded.random.randint(2,12)
self.marginalVal = 0

def addNeighbors(self, nbrs):

self.nbrs = []

for n in nbrs:
self.nbrs.append(n)

def getPicked(self):
return self.picked

def updateValue(self):
self.curVal = self.values[sum(s.getPicked() for s in self.nbrs)]

def getCurVal(self):
self.updateValue()
return self.curVal
def getCurValLS(self):
self.updateValue()
return self.curVal * self.getPicked()
def getValues(self):
return self.values
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def getBids(self):
return self.pastBids
def getSales(self):
return self.pastSales
def getSuccessfulBids(self):
return [a*b for a,b in zip(self.pastBids,self.pastSales)]
def getPrivateValue(self):
return self.privateVal
def getPrivateValueLS(self):
return self.privateVal * self.getPicked()
def getLocation(self):
return self.loc
def getNeighbors(self):
return self.nbrs
def choose(self):
self.picked = True
def unchoose(self):
self.picked = False
def setVar(self, v):
self.selVar = v
self.varVal = v * self.getCurVal()
self.varCost = v * self.privateVal

def getNumPickedNeighbors(self):
return sum([n.getPicked() for n in self.nbrs])

#randomSeeded.py

import random
import numpy

seed = 3302016

random.seed(seed)
numpy.random.seed(seed)
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#landscape.py

’’’
Created on Sep 17, 2015

@author: zachary
’’’
import site
import sys

class Landscape:
’’’
classdocs
’’’

def __init__(self, size):
’’’
Constructor
’’’
self.heldSite = None
self.map = []
m = 0
for i in range(size):
row = []
for j in range(size):
k = site.Site((i,j),m)
row.append(k)
m = m+1
self.map.append(row)
self.size = size
self.buildNeighbors()

def clone(self):
newScape = Landscape(self.size)
for i in range(len(self.map)):
for j in range(len(self.map[0])):
newScape.map[i][j] = site.cloneSite(self.map[j][i])

return newScape
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def getSite(self,loc):
return self.map[loc[0]][loc[1]]

def chooseSite(self,loc):
s = self.map[loc[0]][loc[1]]
s.choose()
def unchooseSite(self,loc):
s = self.map[loc[0]][loc[1]]
s.unchoose()

def unchooseAll(self):
for l in self.map:
for s in l:
s.unchoose()

def buildNeighbors(self):
for i in range(self.size):
for j in range(self.size):
n = []

try:
n.append(self.getSite((i,j-1)))
except IndexError:
pass
try:
n.append(self.getSite((i-1,j)))
except IndexError:
pass
try:
n.append(self.getSite((i+1,j)))
except IndexError:
pass
try:
n.append(self.getSite((i,j+1)))
except IndexError:
pass

self.getSite((i,j)).addNeighbors(n)
def updateEnvVal(self):
for i in range(len(self.map)):
for j in range(len(self.map)):
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self.getSite((i,j)).updateValue()

def getEnvVal(self):
self.updateEnvVal()
enVal = 0
for i in range(len(self.map)):
for j in range(len(self.map)):
enVal = enVal + self.getSite((i,j)).getCurValLS()
return enVal

def getCost(self):
cost = 0
for i in range(len(self.map)):
for j in range(len(self.map)):
cost = cost + self.getSite((i,j)).getPrivateValueLS()
return cost

def printEnvVal(self):
print self.getEnvVal()
print self.getCost()

def map_to_choose(self,map):

self.unchooseAll()
for i in range(len(map)):
for j in range(len(map[0])):
if map[i][j] == 1:
self.chooseSite((i,j))
self.updateEnvVal()

def choose_to_map(self):

return [[int(s.getPicked()) for s in l] for l in self.map]

def updateMargVals(self):

for l in self.map:
for s in l:
st = s.getPicked()
s.choose()
m = self.getEnvVal()
s.unchoose()

28



Schutzman

m = m - self.getEnvVal()
s.marginalVal = m

if st:
s.choose()

def greedyOptimize(self):

self.updateMargVals()
self.updateEnvVal()

maxMargVal = -.01
maxSite = None
s = None

minMargVal = 1000000
minSite = None

for i in range(self.size):
for j in range(self.size):
s = self.getSite((i,j))
if not s.getPicked():
if (s.marginalVal-s.privateVal) > maxMargVal:
maxMargVal = s.marginalVal-s.privateVal
maxSite = s
if s.getPicked():
if (s.marginalVal -s.privateVal) < minMargVal:
minMargVal = s.marginalVal - s.privateVal
minSite = s

if minMargVal < maxMargVal:
minSite.unchoose()
maxSite.choose()

def greedyReduce(self):

self.updateMargVals()
self.updateEnvVal()
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minMargVal = 1000000
minSite = None

for i in range(self.size):
for j in range(self.size):
s = self.getSite((i,j))
if s.getPicked():
if s.marginalVal - s.privateVal < minMargVal:
minSite = s
minSiteLoc = (i,j)
minMargVal = s.marginalVal - s.privateVal
if minMargVal < 1000000:
minSite.unchoose()

def greedyAdd(self):

self.updateMargVals()
self.updateEnvVal()

maxMargVal = -.01
maxSite = None
s = None

for i in range(self.size):
for j in range(self.size):
s = self.getSite((i,j))
if not s.getPicked():
if (s.marginalVal - s.privateVal) > maxMargVal:
maxMargVal = s.marginalVal - s.privateVal
maxSite = s
maxSiteLoc = (i,j)

# print maxSite, maxSiteLoc, maxSite.getPicked()
if -.001 < maxMargVal:
#minSite.unchoose()
maxSite.choose()
return maxSiteLoc
else: return (-1,-1)
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#genalg.py

import math
import sys
import randomSeeded
import landscape
import time
from multiprocessing import Process
import copy

class Solver:
def __init__(self, ls, obj = "ValMax", constr = sys.maxsize):

self.ls = ls
self.numSites = ls.size * ls.size
self.siteMap = list(self.ls.map)
self.siteMapCopy = list(self.siteMap)

self.sites = []
for i in range(ls.size):
for j in range(ls.size):
self.sites.append(self.siteMap[i][j])

self.objective = obj
self.constraint = constr

if self.objective == "ValMax":
self.bound = self.valmax_bound()

self.solTemp = [0] * self.numSites
self.curSols = []
self.survSols = []

self.bestSols = []

def valmax_bound(self):
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self.sites.sort(key=lambda x: x.privateVal)

siteCount = 0
cost = 0
while cost <= self.constraint:
s = self.sites[siteCount]
cost = cost + s.privateVal
siteCount += 1

return siteCount

def generate_random_map(self,sels):

unshuff = [1]*sels + [0]*(225-sels)
randomSeeded.random.shuffle(unshuff)
randMap = [unshuff[k:k+15] for k in range(0,len(unshuff),15)]

return randMap
def stable(self, c, v):

if abs((self.prevCost - float(c))/c) < .0075 and abs((self.prevVal -
float(v))/v) < .0075:

return True
return False

def valmax_sol2(self):

rands = []
self.curSols = []

if self.survSols == []:
# a = [[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1], [0,
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0], [0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1,
0, 1, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 0]]

# self.ls.map_to_choose(a)
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# rands.append((a,self.ls.getEnvVal(),self.ls.getCost(),’a’))
for i in range(self.bound):
for j in range(20):
m = self.generate_random_map(i+1)
self.ls.map_to_choose(m)
rands.append((m,self.ls.getEnvVal(),self.ls.getCost(),’r’))

rands.sort(key = lambda x: x[1], reverse = True)
rands = [t for t in rands if t[2] <= self.constraint]
mvc = rands[:]
# print "initial randoms generated, sorted, and filtered"

mvc.sort(key = lambda x: x[1], reverse = True)
p = min(150, len(mvc))
gen_cur = mvc[:p]
self.survSols = gen_cur[:]

for s in self.survSols[:25]:
if s[0] not in [c[0] for c in self.survSols[:25]]:
self.curSols.append(s)

p = len(self.survSols)
pmap = [s[0] for s in self.survSols]
for i in range(len(pmap)):
pmap[i] = [val for sublist in pmap[i] for val in sublist]

pmap = [sum(x) for x in zip(*pmap)]
pmap = [x/float(p) for x in pmap]

# print "probabilities generated"

probMaps = []
while len(probMaps) < 50:
probs = [randomSeeded.random.random() for i in range(225)]
for r in xrange(225):
if probs[r] < pmap[r]:
probs[r] = 1
else:
probs[r] = 0
probs = [probs[k:k+15] for k in range(0,len(probs),15)]
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self.ls.map_to_choose(probs)
if self.ls.getCost() <= self.constraint:
probMaps.append(probs)

for m in probMaps:
self.ls.map_to_choose(m)
self.curSols.append((m,self.ls.getEnvVal(),self.ls.getCost(),’p’))

# print "probabilistic solutions generated"

rands = []
for i in range(self.bound,self.bound/2,-1):
for j in range(25):
m = self.generate_random_map(i)
self.ls.map_to_choose(m)
rands.append((m,self.ls.getEnvVal(),self.ls.getCost(),’r’))

rands.sort(key = lambda x: x[1], reverse = True)
rands = [t for t in rands if t[2] <= self.constraint]

self.curSols = self.curSols + rands[:75]

# print "random solutions generated"

######
tSols = self.survSols[:min(25,len(self.survSols)-1)]
count = 0
gt = time.time()
for s in tSols:
self.prevCost = sys.maxsize
self.prevVal = sys.maxsize
if count == 1:
pass
# print "one greedy time: ", time.time() - gt
count += 1
# print count, " greedy"
self.ls.map_to_choose(s[0])
loops = 0
while self.ls.getCost() <= self.constraint and loops < 7:
loops += 1
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# print "stability: ", self.stable(self.ls.getCost(),
self.ls.getEnvVal())

self.prevCost = self.ls.getCost()
self.prevVal = self.ls.getEnvVal()
# print "loops: ", loops
# print self.ls.getCost(), self.ls.getEnvVal()
self.ls.greedyOptimize()
self.ls.updateEnvVal()

count = 0
while self.ls.getCost() > self.constraint:

self.ls.greedyReduce()

while (self.ls.getCost() + 12 <= self.constraint) and count < 7:
# print "greedy add: ",count
# print "cost, value, numsites: ", self.ls.getCost(),

self.ls.getEnvVal(), sum([sum(l) for l in self.ls.choose_to_map()])
count += 1
self.ls.updateEnvVal()
if self.ls.greedyAdd() == None:
continue

self.curSols.append((self.ls.choose_to_map(),self.ls.getEnvVal(),self.ls.getCost(),’g’))

# print "greedily modified solutions generated"
#######

self.curSols.sort(key = lambda x: x[1], reverse = True)
stt = time.time()
sol_maps = [s[0] for s in self.survSols]

mut_genes = []
for i in range(25):
x = randomSeeded.random.betavariate(1,5)
ind = len(self.survSols)-1
ind = ind*x
ind = int(ind)
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mut_genes.append(ind)
# print "mutation selections:", mut_genes
drt = time.time()

# print "draw time: ", drt-stt

# print "sol_maps length", len(sol_maps)

mut_sol_maps = []

for i in mut_genes:

mut_sol_maps.append(sol_maps[i])

for m in mut_sol_maps:
d = randomSeeded.numpy.random.binomial(225,.08)
for i in range(d):
m[randomSeeded.random.randint(0,14)][randomSeeded.random.randint(0,14)]
self.ls.map_to_choose(m)
self.curSols.append((m,self.ls.getEnvVal(),self.ls.getCost(),’m’))

tmt = time.time()
# print "total mutation time: ", tmt-stt

self.curSols.sort(key = lambda x: x[1], reverse = True)
self.curSols = [t for t in self.curSols if t[2] <= self.constraint]

i = 0
while i < len(self.curSols):
if self.curSols[i][0] not in [c[0] for c in self.bestSols]:
self.bestSols.append(self.curSols[i])
break
i += 1
self.survSols = self.curSols[:min(150,len(self.curSols))]

# print "FINISHED", [s[1] for s in self.curSols[:15]]
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def main(constraintVal):

global ls
t1 = time.time()
copyScape = copy.copy(ls)

solver = Solver(copyScape, constr = constraintVal)

print solver.bound, "bound"
mrp = (0,0)
while (solver.ls.getCost() < solver.constraint) and mrp != (-1,-1):
mrp = solver.ls.greedyAdd()

solver.ls.updateEnvVal()
if solver.ls.getCost() > solver.constraint:
print "IT HAPPENED", mrp
solver.ls.unchooseSite(mrp)
solver.ls.updateEnvVal()

gc = solver.ls.getCost()
gv = solver.ls.getEnvVal()
print "Greedy cost, greedy val",gc,gv

print "greedyMap", solver.ls.choose_to_map()
t2 = time.time()
print "GREEDY TIME: ",t2-t1
a = [[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0,
0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 1, 0, 0,
0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0], [0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0]]

print "sum", sum([sum(x) for x in a])
solver.ls.map_to_choose(a)
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solver.ls.printEnvVal()
print solver.ls.getEnvVal()
print solver.ls.getCost()
print "cosnstr type", type(solver.constraint)
print "cost type", type(solver.ls.getCost())
# start = time.time()
#
# global it
#
# for i in range(7):
# print "iteration", i
# it = i
# solver.valmax_sol2()
# solver.bestSols.sort(key = lambda x: x[1], reverse = True)
# #print solver.bestSols[0][1:]
# print [s[1:] for s in solver.bestSols]
#
# stop = time.time()
#
# print "time: ", stop-start
# print "constraint", solver.constraint
# print solver.bestSols[0]
#
# solver.ls.map_to_choose(solver.bestSols[0][0])
#
# return solver.ls
ls = landscape.Landscape(15)
def mainLoop():
Pros = []

for i in range(12):
l = 25+(i*25)
p = Process(target = main,args=(l,))
Pros.append(p)
p.start()

for t in Pros:
t.join()

if __name__ == "__main__":
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print randomSeeded.seed
mainLoop()

import winsound
winsound.Beep(554,1000)
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