
About

I took these notes during the Spring 2017 iteration of Professor Sampath
Kannan’s Theory of Computation (CIS511) course. The course followed In-
troduction to the Theory of Computation (3ed) by Michael Sipser. As taking
notes in LATEX on-the-fly is not an easy task, I am sure this document is full
of typos, sloppy notation, and small mathematical errors. If you find such an
error, please send me an email at {ianzach+notes[at]seas.upenn.edu} so
I can correct it.

0-1

Lecture 1: Intro and Some Regular Languages

CIS 511: Theory of Computation Spring 2017

Lecture 1: Intro and Some Regular Languages
Professor Sampath Kannan Zach Schutzman

Introduction

Why theory?

1. Minimal approach to understanding the idea of computation.

2. What makes computation tick?

3. Theory anticipates technology.

4. Models of computation are interesting.

Mathematics!

Should know:

1. Sets

2. Functions

3. Relations

4. Logic

5. Proofs

6. Graphs

Definition 1.1 An alphabet is a non-empty, finite set of characters.

Definition 1.2 A string s (over an alphabet Σ) is a finite ordered sequence of elements of Σ.

Definition 1.3 The empty string, ε, is the sequence of no symbols, and is in fact a valid string.

Definition 1.4 Let Σ∗ be the set of all strings over Σ.

Definition 1.5 A language over Σ is any subset of Σ∗.

The empty set is a language. This is not the same as the language only containing the empty string.

1-1

1-2

Finite State Machines: A First Model

Scalability (asymptotics) is a requirement for any interesting model.

To compute on larger and larger inputs, a computer needs memory. What is the minimum amount of memory
you need to do something interesting?

Definition 1.6 A finite state machine will be a model with a constant amount of memory.

The states of an FSM correspond to memory (a machine with k states can have 2k ’bits’ of memory).

Example: define the language L = {s ∈ Σ∗|s has an odd number of 1s}.

even odd

1

1

00

Definition 1.7 A deterministic finite automaton (DFA), M , is a 5-tuple (Q,Σ, δ, q0, F).

Q, the set of states.

Σ, the alphabet

δ : Q× Σ→ Q, the transition function

q0, the start state

F , the accept states

Definition 1.8 M accepts a string s = s1s2 . . . sk if there is a sequence of states in M starting with q0 and
ending in a final state q0q1 . . . qk such that δ(qi, si+1) = qi+1.

Definition 1.9 If L = {s|M accepts s}, the we say M recognizes L.

Definition 1.10 If a language L is recognized by some DFA, then it is regular.

Definition 1.11 A nondeterministic finite automaton (NFA), M , is a 5-tuple (Q,Σ, δ, q0, F).

Q, the set of states.

Σ, the alphabet

δ : Q× Σ ∪ {ε} → P(Q), the transition function

q0, the start state

1-3

F , the accept states

Now, δ maps the current state and input character or ε to some subset of states.

Definition 1.12 A string s is accepted by and NFA M if there is some path for s from the start state to
a final state.

Definition 1.13 M recognizes a language L consisting of all strings it accepts.

Example: let L = {s | the 3rd last character is a 1}.

1 0, 1 0, 1

0, 1

Lecture 2: More On Regular Languages

CIS 511: Theory of Computation Spring 2017

Lecture 2: More On Regular Languages
Professor Sampath Kannan Zach Schutzman

More Finite Automata

NFAs are Equivalent to DFAs

Recall: every DFA recognizes some (regular) language, a language is regular if there exists some DFA
recognizing it. NFAs also recognize regular languages (every DFA is also an NFA).

Question: are NFAs more powerful than DFAs? They are certainly a broader class of machines, given that
the set of all DFAs is a propers subset of the set of all NFAs.

Theorem 2.14 NFAs recognize exactly the class of regular languages.

Proof: (A rough sketch)

Consider an NFA M without ε-transitions. We can imagine a string’s traversal as maintaining a set of
possible states you are in, and the NFA accepts if and only that set contains a final state at the conclusion
of reading the string. Let’s consider the set of states at each step.

Create a DFA M ′ with states corresponding to subsets of states of the NFA. Now, add transitions in M ′

corresponding to the set of possible transitions in M . Formally, let S ⊆ Q, then δ′(S, a) =
⋃
q∈S

δ(q, a). These

subsets S correspond to states in M ′.

The start state of M ′, q′0 is the state corresponding to {q0}. The final states of M ′, F ′ are the subsets of Q
containing at least one element of F .

We can deal with ε-transitions by extending δ′ to also include all states reachable from reading a and
a following ε. Formally, define E(q) as the set of states reachable from q without consuming an input
character (i.e. 0 or more ε-transitions). Then make δ′(S, a) =

⋃
p∈E(q) ∀ q∈S

δ(p, a).

Closure Properties

Theorem 2.15 If L1 and L2 are regular languages, then so is L1 ∪ L2.

Proof:

Let M1 and M2 be DFAs that recognize L1 and L2, respectively. Add a new start state and add an ε-
transition to the start states of M1 and M2. This NFA now accepts exactly the strings in either L1 or L2

(or both).

2-1

2-2

Since this is an NFA recognizing it, L1 ∪ L2 is regular.

Theorem 2.16 If L1 and L2 are regular languages, then so is their concatenation, denoted L1L2 or L1 ◦L2.

Proof:

Let M1 and M2 be DFAs that recognize L1 and L2, respectively. Add ε-transitions from the final states of
M1 to the start state of M2. The new start state is the original start state of M1 and the final states are
those from M2. This NFA now non-deterministically tries to split the string into its L1 and L2 parts.

Since this is an NFA recognizing it, L1 ◦ L2 is regular.

Theorem 2.17 The Kleene Star of a regular language L, denoted L∗, is regular.

The Kleene Star is a generalization of concatenation. L∗ is the set of strings that are an arbitrary (finite)
number of concatenations of L with itself (including zero, i.e. ε ∈ L∗ for all L).

Proof:

Let M be a DFA recognizing L. Add a new start state which is also a final state, and add an ε-transition to
the original start state. Then, add ε-transitions from all of the original final states to the new start state.

Since this is an NFA recognizing it, L∗ is regular.

Theorem 2.18 The complement of a regular language L, denoted L̄ or Lc is regular.

Proof: Given a DFA M recognizing L, make all the accept states non-final and all non-final states final.
This is now a DFA recognizing Lc.

Theorem 2.19 If L1 and L2 are regular languages, then so is L1 ∩ L2.

Proof: This follows directly from the proofs of closure under union and complement and applying DeMor-
gan’s Laws.

Regular Expressions

We are going to define regular expressions inductively.

∅ is a regular expression

ε is a regular expression

For each a ∈ Σ, a is a regular expression

2-3

If r1, r2 are regular expressions, so are r1r2, r1 ∪ r2, r∗1

Theorem 2.20 A language L is regular if and only if it is described by some regular expression.

Proof:

The first direction is easy. We can make NFAs accepting nothing, ε, and any single character, and we have
already shown the construction for NFAs for the three operations. Therefore, any regular expression can be
converted into an NFA by this inductive construction.

To see that any DFA can be converted into a regular expression, we will use an inductive construction. We
are going to transform the DFA by merging states and associating them with simpler regular expressions.

Let L be our regular language and M a DFA accepting it. Let’s let Q = [n], such that the states are
numbered, in order to keep better track of them.

Define R
(k)
i,j := {x|x takes M from i to j without passing through any state labelled greater than k}

We know R
(0)
i,j = {a|δ(i, a) = j} if i 6= j. R

(0)
i,j = {a|δ(i, a) = j} ∪ {ε} if i = j. Let’s proceed inductively.

Suppose we know R
(k)
i,j for all i, j. To compute R

(k+1)
i,j , observe that this is a superset of R

(k)
i,j , and it also

contains those strings passing through (k+1) at least once. The strings that go from (i) to (k+1) are captured

by R
(k)
i,k+1, the strings that go from (k+ 1) to another occurence of (k+ 1) are captured by (R

(k)
k+1,k+1)∗ and

the strings from (k + 1) to (j) are captured by R
(k)
k+1,j . So R

(k+1)
i,j is R

(k)
i,j ∪R

(k)
i,k+1(R

(k)
k+1,k+1)∗R

(k)
k+1,j .

This is a regular expression describing the language accepted by M .

Lecture 3: Regular Language Wrap-up and Intro to Turing Machines

CIS 511: Theory of Computation Spring 2017

Lecture 3: Regular Language Wrap-up and Intro to Turing Machines
Professor Sampath Kannan Zach Schutzman

The rest of Regular Languages

Recall, regular languages are those recognized by DFAs, NFAs, and described by regular expressions

Are there languages that are not regular? Trivially, yes. The set of all languages is uncountable, but the set
of all regular languages is countable.

How can we determine that a language is not regular?

Theorem 3.21 The Pumping Lemma (for regular languages): If L is a regular language, then there
exists a constant p, called its pumping length, such that if x ∈ L and |x| ≥ p, then x can be written as
x = uvw, where v is non-empty, |uv| ≤ p, and uviw ∈ L for any i ∈ N.

Proof: Suppose L is regular. Then there exists a DFA M that recognizes L. Say M has p states (|Q| = p).
Suppose L contains some string x, |x| > p. Then by the Pigeonhole Principle, the path of x must pass
through at least one state at least twice. Equivalently, the path of x contains some cycle.

Let’s think of x as broken into 3 parts: uvw, where u is the portion before the cycle, v is the cycle, and w
is the portion after the cycle. We will allow u or w to be empty, but v must be non-empty. Note that x ∈ L
implies uw ∈ L, and more generally that uviw ∈ L, for any i ∈ N.

We also note that |uv| ≤ p, that is there will always be a cycle before processing p characters.

Corollary 3.22 A language is not regular if there does not exist any way to break a string of length greater
than p into a satisfactory uvw.

Example:

Claim 3.23 The language L = {0n1n|n ∈ N} is not regular.

Proof:

Suppose, for the sake of contradiction, that L is regular with pumping length p. Consider the string 0p1p.
Since we have |uv| ≤ p, v is of the form 0k, for some 1 ≤ k ≤ p. The Pumping lemma asserts that uviw is in
L for all i ∈ N. But the string uv2w has more 0s than 1s, and is not in L. This is a contradiction, therefore
L is not a regular language.

Example:

3-1

3-2

Claim 3.24 The language L = {x#y||x| = |y|} is not regular.

Proof:

The class of regular languages is closed under intersection. Suppose, for the sake of contradiction, that L is
regular. Let the language K = {0∗#1∗}. K is regular, as it is recognized by the following machine:

#

0

1

1

0

0, 1

Let’s consider K ∩ L. This language is K ∩ L = {0n#1n|n ∈ N}. By a slight adjustment to the previous
proof, we can say that K ∩L is not regular. This contradicts the assumption that both K and L are regular,
and since we know that K is regular, it must be the case that L is not.

Corollary 3.25 DFAs can’t count!

Turing Machines

We are moving from the simplest model of computation to the ’most’. We can think of a DFA as receiving
an input on a tape, reading one character at a time, and only moving forward, and changing states according
to the currently read character and the current state, via δ.

We can identify three principal limitations:

1. The head doesn’t pass the end of the tape

2. The tape is read-only

3. The head only moves forward

For a Turing machine, we lift all three of these limitations. The head can move left and right, it can read
and write, and it can move beyond the input.

We are going to expand the tape alphabet Γ to be a proper superset of Σ, and also containing a blank symbol
t.

Claim 3.26 Our language L = {0n#1n|n ∈ N} can be recognized by a Turing Machine.

3-3

Proof:

Consider an example input below. First, we can scan the string to validate it is of the correct form, if not,
reject. Assume that it is.

0 0 . . . # 1 . . . 1 t t

The following algorithm determines if the string is in L:

Replace the first zero on the tape with a special marker symbol.

Traverse the tape and replace the first one with a marker symbol.

Repeat until you either run out of zeros or ones.

If all symbols are marked, accept, otherwise, reject.

Definition 3.27 A Turing Machine is a 7-tuple (Q, q0,Σ,Γ, δ, qa, qr).

Q is the set of states

q0 is the start state

Σ is the input alphabet

Γ is the tape alphabet, a proper superset of Σ

δ : Q× Γ→ Q× Γ× {L,R} is the transition function.

qa is the accept state

qr is the reject state.

The transition function maps the current state and the currently read character to the next state, the
character to write on that cell, and a LEFT or RIGHT move. The machine halts when it reaches qa or qr,
by definition.

Definition 3.28 Given a Turing machine M , the language recognized by M is the set of all strings that
cause M to move to qa.

If M recognizes L and x /∈ L, there are two possibilities:

1. M reaches qr

2. M computes infinitely and never reaches qa or qr. That is, M ’loops forever’.

In both of these cases, we say that M doesn’t recognize x, but in the second case, how do we know if M
really won’t halt on x, rather than just taking a really long time?

3-4

Definition 3.29 A Turing machine M decides a language L if for all x ∈ L, M reaches qa and for all
x /∈ L, M reaches qr. The set of Turing decidable languages is a subset of the Turing recognizable languages.

Definition 3.30 The current configuration of a Turing machine M is the current state, the tape contents,
and the head position at some point in time.

The notation for this is:

qc a

to denote that we are in state qc and the head is over a.

Example: Let’s construct a Turing machine to recognize the language of repeated words,
L = {w#w|w ∈ Σ∗}.

Lecture 4: More Turing Machines

CIS 511: Theory of Computation Spring 2017

Lecture 4: More Turing Machines
Professor Sampath Kannan Zach Schutzman

Turing Machines

Let B = {w#w|w ∈ Σ∗}. Here is a TM to accept this language:

q1

q2

q3

q4

q5

q6 q7q8 qa

0→ x; R

1→ x;R

0, 1→ ; R

0, 1 → ; R

#→ ; R

#→ ; R

x→ ; R

x→ ; R

0→ x ; L

1→ x ; L

0, 1, x→ ; L

→ ; L

0, 1→ ; L

x→ ; R

#→ ; R

x→ ; R

t → ; R

Variations on the Turing Machine

How robust is the TM? Turns out, very!

Definition 4.31 Define a stay-TM as one with move commands expanded to {L,R, S}, where S denotes
no-move.

4-1

4-2

Claim 4.32 A stay-TM is equal in power to the regular TM.

Proof:

A regular TM is a stay-TM which does not use the S option, so clearly anything a TM can do, a stay-TM
can as well.

Now, to see that a stay-TM does not recognize or decide any more languages than a regular TM, let Ms be
a stay TM for some language. To convert it into a regular TM M ′, perform the following procedure.

Suppose M has a transition that uses the S option, of the form

a→ b ; S

for some a, b ∈ Γ. Replace this transition with an intermediate state and two transitions that read a character,
perform the write, then move right, then move left without writing anything, as follows, where ∗ represents
any character in Γ.

a→ b ; R ∗ → ; L

This pair of transitions performs the same modification to the state of M ′ as the original does to M , therefore
stay-TMs are no more powerful than regular TMs.

Definition 4.33 A multi-tape TM is a Turing machine with a finite number (k) of tapes. Each transition
in δ reads the character under each head and writes and moves independently on each tape. Formally, δ is
now a function δ : Q× Γk → Q× Γk × {L,R}k.

Claim 4.34 A multi-tape TM is no more or less powerful than a regular TM.

Proof:

One direction is trivial. A regular TM is a multi-tape TM with k = 1.

To see that a multi-tape TM is not more powerful than a regular TM, let M be a TM with k tapes. We will
construct a single-tape TM S that simulates M .

Assume # /∈ ΓM , which will be our delimiter symbol in S.

We will also expand ΓS to include a, ȧ, for each a ∈ ΓM .

Let S have a tape initialized to the concatenation of the contents of each of M ’s k tapes, separated by #.

We will use our dotted symbols to track where the head of each tape is, and since the head can only be in
one place, there is exactly one dotted symbol in each of the k segments.

Let S sweep to the right, entering a state corresponding to the k-tuple of dotted symbols it reads and the
current state of M . Then, S needs to execute the proper transition in M . We now know that the state space
of S is at least |QM | × |ΓM |k. On the way back to the left end, S should execute M ’s transitions.

4-3

We now have to deal with the issue of S overwriting the bounds of the tape segments. We give S a routine
that pushes everything to the right in order to make space.

This machine simulates M , completing the proof.

Observe that if M has taken at most T steps, then it uses at most T cells on each of its tapes. Therefore, the
maximum number of cells needed on S’s single tape is O(kT). We face no worse than quadratic slowdown,
as each of the T steps of M take no more than T steps to simulate in S, leading to a slowdown on the order
of T 2.

Is it possible for a multi-tape TM to have a truly quadratic speedup?

Claim 4.35 Let L = {w#wR|w ∈ Σ2}. This language gains a quadratic speedup on a 2-tape machine versus
the naive implementation on a single tape machine.

Proof:

First, copy the input to the second tape. Then, the head on the second tape can simultaneously match
characters from right to left with the first tape going left to right.

How many steps does this take? If the input is of size m, we can copy the input in O(m), move the first
head back to start in O(m), and step through the string in O(m).

For the single tape machine, we need O(m) steps to move back and forth to check each pair of characters,
of which there are m

2 , for O(m) comparisons. Therefore, the 2-tape machine decides the language in O(m)
while the single tape needs O(m2).

Can we do better by being clever? No! If we try to batch the symbols and compress, we lose information
which might lead to incorrect acceptance/rejection.

We can also show that the two-way infinite tape Turing Machine also has the same power as a regular TM.

Additionally, the TM with a k-dimensional infinite grid tape has the same power as a regular TM.

Lecture 5: Nondeteminism in Turing Machines

CIS 511: Theory of Computation Spring 2017

Lecture 5: Nondeteminism in Turing Machines
Professor Sampath Kannan Zach Schutzman

Nondeterministic Turing Machines

What if our TMs can explore a variety of possible transitions simultaneously.

Definition 5.36 A non-deterministic Turing Machine (NTM) is a Turing machine M where
δM : Q× Γ→ 2Q×Γ×{L,R}.

Why do we care?

Claim 5.37 NTMs are equivalent in power to regular TMs.

Theorem 5.38 If M is a NTM recognizing language L, then there exists a deterministic TM D recognizing
L.

Proof:

The idea is to have D simulate the behavior of M . We can think of M ’s computation as a tree of configura-
tions, branching when it makes non-deterministic choices. We might be tempted to fully explore each branch
sequentially, but we have to be careful as there may be some branches that loop forever, and we don’t want
to get stuck on these.

Our solution will be to explore in a breadth-first manner. This way, if there is some accepting path, we will
eventually find it without getting stuck in an infinite loop.

Formally, let D be a 3-tape Turing machine. The first tape will be a read-only input tape. The second
will be a work tape that actually simulates M . The third tape will be used to address where we are in the
configuration tree. We can upper-bound the number of children a configuration can have by B by observing
that at each transition, there are no more than B possible resultant configurations. Tape 3 will store address
values x1 . . . xk, which tell you, from the root, which child to explore. We will skip over invalid addresses.

Begin by copying the initial configuration from Tape 1 to Tape 2. Then look at Tape 3 and get x1, then
process that, then do it for x2, until we reach xk. When we reach the end, increment the value on Tape 3
and start over. If we reach qr, we terminate that branch. If we reach qa on some branch, we accept.

This runs slowly, but it deterministically simulates M , and therefore recognizes L.

Corollary 5.39 Turing machines can simulate other Turing machines.

The Turing machine was ’invented’ by Alan Turing partly as a result of one of Hilbert’s questions of finding
solutions to Diophantine equations. Turing wanted to figure out how to show that no possible algorithm
exists.

5-1

5-2

Meanwhile, Alonzo Church created the λ-calculus, which is a functional view of computability that is equiv-
alent to Turing’s algorithmic view, proved by Church and Turing. These are both equivalent to something
in logic called partial recursive functions.

Is there a stronger model of computability? The Church-Turing Thesis proposes that anything computable
by any physical device is computable under the notions of Turing machines or λ-calculus. Presently, there
has not been any evidence that there exists a physical device that is more powerful than a Turing machine.

Turing Machine Computations = Algorithms

Imagine a Turing machine E hooked up to a printer (write-only output tape)

Definition 5.40 Such a Turing machine E enumerates a language L if for each x ∈ L, E eventually
outputs x and for each y /∈ L, E never outputs y.

Theorem 5.41 A language L is recognizable by a TM if and only if there exists some TM that enumerates
L.

Proof:

Suppose L is recognized by a machine by a TM M . We want to build an enumerator E for L. Order the
strings in Σ∗ by length then by dictionary order (for example). In order, for each x ∈ Σ∗, run M on x, and
if M accepts, print x. We need to be careful about looping forever on some string. We will take a variable
k and increment it as E runs. For k = 1, 2 . . . ,∞, run M on each of the first k strings for k steps, printing
those that M accepts on.

To see that for every string y ∈ L, we know that y is the ith string in language for some finite i, so for some
k = j, M will run on y. Since M accepts y in a finite amount of steps, less than or equal to the max{i, j}.
Since this is finite, E eventually outputs y.

Now suppose L can be enumerated by an enumerator E. We want to build a machine M to recognize L.
This is easy. M does the following: given a string x, every time E prints a string, compare it to x. If these
values are equal, accept.

E never prints a string not in L, so M loops forever on strings not in L, which is fine.

The proof is complete and we can say the class of languages recognized by Turing machines is exactly the
recursively enumerable languages.

Corollary 5.42 A language is decidable if and only if the enumerator prints the strings in the lexicographic
order.

Decidable Languages

A language is decidable if there is a Turing machine that recognizes it and halts on all inputs.

Let’s think about the problem of finding a minimum spanning tree in a weighted graph. We have an efficient
algorithm that always terminates to do this. How do we translate a problem into a language?

5-3

Viewing this as a language, we can encode the graph G and tree T as strings and define the language as
L = 〈G,T 〉 such that T is the MST of G.

Alternatively, we can encode G and an integer K and define the language as L = 〈G,K〉 such that there
exists a MST of G with weight at most K.

Using this second approach, we can do binary search (for example) to find the correct value of K. We can
then find the tree itself by iteratively removing edges to find the edges in the tree by trial-and-error.

Lecture 6: Decidability and Undecidability

CIS 511: Theory of Computation Spring 2017

Lecture 6: Decidability and Undecidability
Professor Sampath Kannan Zach Schutzman

Decidable Languages

Definition 6.43 Recall, a language is decidable if it can be recognized by a Turing Machine which always
halts.

Examples of Decidable languages:

• The language of bipartite graphs: {〈G〉 | g is bipartite}
A TM to decide if a graph is bipartite: use a second tape as a work tape, which will store two arrays.
Begin by putting vertex v1 on the ‘left’ side. Iteratively choose a vertex whose label we know, and add
its neighbors to the other side. If we ever put a vertex on both sides, reject. If we successfully classify
every vertex, accept.

• The language of 3SAT : {〈Φ〉 | Φ is a boolean formula in 3-CNF with a satisfying assignment}
This is our classic NP-Complete problem. CNF (conjunctive normal form) means that the formula is
written as the AND of several clauses, each containing the OR of several literals (variables and/or
their complements). 3-CNF is CNF where each clause has at most 3 literals. A TM to decide this
language is to enumerate the 2n possibilities for all assignments. If we find one that is true, accept. If
we exhaust all possibilities, reject.

• Every regular language (and context-free language) is decidable.

Claim 6.44 A Turing machine can be designed to simulate any other Turing machine. Essentially, we can
describe a Turing machine as a string encoding its 7-tuple.

Now, we can talk about Turing machines that take another TM as input and performs some computation
with respect to that machine. A Turing machine T can take as input a a machine and a string 〈M,w〉, we
can think of T like an interpreter and executer and M as a program with input w. T outputs M(w) (if such
a result can be obtained in finite time).

At a high level, T has a work tape that keeps the current configuration of M . It starts with the start state of
M and the input string w. T consults the transition function of M and updates the work tape accordingly.
At the end of execution, the work tape contains the output of M (with some extra configuration information).

Definition 6.45 We call this T a Universal Turing Machine.

Undecidable Languages

Is there even a language that is undecidable?

6-1

6-2

Claim 6.46 Yes!

Proof:

We use a counting argument to show the existence of an undecidable language (actually, there are uncountably
many non-decidable languages). If Σ is a finite alphabet, Σ∗ is countably infinite, as it can be enumerated
in lexicographic order, for example.

The set of all Turing machines is also countable, as we can encode it as a string over some alphabet, say
{0, 1,#}. Conversely, we can show P(Σ∗), the set of all subsets of Σ∗, i.e. the set of all languages, is
uncountable.

By Cantor’s Diagonal Drgument, we can show the set of binary functions on N is uncountable. This set is in
bijection with P(N). Since there is a bijection Σ∗ ←→ N, and a bijection P(N)←→ P(Σ∗) and no bijection
P(N)←→ N, there is no bijection P(Σ∗)←→ N, because the composition of bijections is a bijection.

To show the same thing, we can explicitly construct a diagonalization case by allowing the columns to
correspond with each string in Σ∗ and each row is a binary function on Σ∗, i.e. a language. By the Diagonal
Argument directly, we see the set of languages is uncountable.

Since the set of Turing machines is countable and the set of all languages is uncountable, there must be some
(uncountable set of) languages not decidable (or even recognizable) by some Turing machine.

Lecture 7: Undecidability, Continued

CIS 511: Theory of Computation Spring 2017

Lecture 7: Undecidability, Continued
Professor Sampath Kannan Zach Schutzman

An Undecidable Language

Recall, we showed last time that, by a cardinality argument, that there must exist some language that is not
Turing decidable, or even recognizable.

Example: Let the language ATM = {〈M,w〉|M(w) accepts}, the language of machines and words such that
M reaches its qa on input w.

Claim 7.47 ATM is not decidable.

Proof: Assume for the sake of contradiction that ATM is decidable, and let H be the TM that decides it.
We will show that H cannot exist.

How does H work? H takes a pair 〈M,w〉 and accepts if M accepts w and rejects if M does not accept
(reject or loop forever). Note that because of this ‘loop forever’ case, we can’t just simulate M on w.

Create a new TM D that takes as input the description of a Turing machine 〈M〉. D calls H on 〈M, 〈M〉〉.
Since H decides a language, it always terminates. Define the behavior of D to return the complement of the
answer that H provides. That is, if H accepts on 〈M, 〈M〉〉, then D rejects. I.e., if H says that Machine
#17 accepts on the input ‘17’, then D rejects.

Now, how should D behave when given input 〈D〉? First, D calls H on 〈D, 〈D〉〉. Next, H decides if D
accepts D. In the former case, it accepts, the latter, rejects. So, if H says that D accepts 〈D〉, then D rejects.
Conversely, if H says that D does not accept 〈D〉, then D accepts. Both of these cases are paradoxical,
hence no such decider H for ATM exists, so ATM is not a decidable language.

This proof is equivalent to Cantor’s diagonal argument for uncountablility. Consider the rows indexed by
Turing machines and the columns by string descriptions of Turing machines. The table values are either
‘accept’ or ‘reject’ when H receives input 〈r, 〈c〉〉. D then works by going down the diagonal and taking the
complement of the entry at that point. If we think about ‘accept’ and ‘reject’ as being ‘1’ and ‘0’, we have
exactly the same case as Cantor’s diagonal argument that R is uncountable.

What about an unrecognizable language?

An Unrecognizable Language

Claim 7.48 A language L is decidable if and only if L and LC are both recognizable.

Proof:

If L is decidable, then clearly it is recognizable. Additionally, LC must be decidable, as it is decided by a
machine that simulates a decider for L and outputs the complement of the result.

7-1

7-2

Corollary 7.49 The class of decidable languages is closed under complement.

Hence, LC is recognizable.

Now, assume that L and LC are both recognizable. We will construct a decider for L. Let M and MC be
recognizers for L and LC , respectively. Let MD be a TM that works by alternating simulating M and MC

one step at a time. Because L and LC are both recognizable, if a string x is in L, then M halts and accepts
on x. If x is not in L, then MC halts and accepts on x. Since MD alternates steps of M and MC , it halts in
a finite amount of time, and outputs an answer corresponding to the submachine that accepted. MD accepts
if M accepts or MC rejects. MD rejects when M rejects or MC accepts.

Is ATM recognizable? Yes! The simple approach of simulating M on w will halt if M accepts. The issue
came from us wanting a machine to halt in the case that w is not in L(M).

Let’s define ATM as the language where M does not accept w. Is this language Turing recognizable?

Claim 7.50 ATM is not recognizable.

Proof:

If ATM is recognizable, then together with the proof that ATM is recognizable, we know that ATM would
have to be decidable. We know this is false, so ATM is not recognizable.

We found a language that is not recognizable!

Reductions

The idea of reductions is ubiquitous in mathematics and computer science. Fundamentally, it is the idea of
solving a new problem by converting it to one you already know how to solve.

Suppose we have two languages A and B.

Definition 7.51 A reduction from A to B is a method for using a procedure for solving/deciding/recognizing
B to solve/decide/recognize A.

We can think about a subroutine that can solve B being used to solve A.

The existence of a reduction from A to B in a sense means that A is no harder than B (B is at least as hard
as A).

If we can reduce an undecidable language A to some language B, then B must be undecidable. We will
denote “A reduces to B” as A � B.

A reduction from A to B: given a TM S for solving B, construct a TM R that uses S as a subroutine to
solve A.

Example: Define HALTTM = {〈M,w〉 |M halts on w}. This is the set of pairs 〈M,w〉 such that M halts
on w.

Claim 7.52 HTM is undecidable

7-3

Proof: We prove this by reduction. We will show that, if we assume HALTTM is decidable, we can use it
to decide HALTTM . This is a reduction from ATM to HALTTM .

Suppose S is a TM that decides HALTTM . S takes as input 〈M,w〉 and accepts if M halts on w, rejects if
M loops forever. Then a TM for ATM works by taking input 〈M,w〉, asks S whether M halts on w, if S
rejects, then reject, otherwise, simulate M on w and output the result.

This decides ATM , which is a contradiction. Hence such an S cannot exist and HALTTM is not decidable.

Example: Define ETM = {〈M〉 |M recognizes ∅} be the language of TMs that accept no strings.

Claim 7.53 ETM is undecidable

Proof: We proceed again by reduction from ATM to ETM .

Let S be a decider for ETM . S takes as input 〈M〈 and accepts if M accepts no strings and rejects if M
accepts at least one string. A machine for ATM takes as input 〈M,w〉, a machine and a string. We will show
that S can be used to build a decider for ATM

Define a new machine M ′ such that M ′ on input x 6= w rejects and on input x = w simulates M on w. M ′

recognizes a language that is either ∅ or {w}. But M ′ accepts w only when M accepts w. We can then feed
〈M ′〉 to S. If S accepts, then M does not accept w. Conversely, if S rejects, then M accepts w.

We can now decide ATM as follows: on input 〈M,w〉, construct M ′ and pass it to S. Since S always halts,
ATM halts on all inputs, and is therefore decidable.

Because ATM is not decidable, no such S can exist and ETM must be undecidable.

Lecture 8: More on Reducibility

CIS 511: Theory of Computation Spring 2017

Lecture 8: More on Reducibility
Professor Sampath Kannan Zach Schutzman

Mapping Reducibility

Consider languages A ⊆ Σ∗, and B ⊆ Σ∗.

Recall the idea of a reduction is A reduces to B means that we can use B to solve A. If A is hard, then B
must be (at least as) hard. If B is easy, then A must be easier.

Definition 8.54 A Turing machine computes a function f : Σ∗ → Σ∗ if on all inputs x it halts with
exactly f(x) on its output tape.

Definition 8.55 A function f is Turing computable if there exists a Turing machine which computes it.

Definition 8.56 A mapping reduction is a Turing computable function f : Σ∗
TC−−→ Σ∗ such that if x ∈ A,

then f(x) ∈ B. Similarly, if y /∈ A, then f(y) /∈ B.

Recall last time we constructed a Turing reduction fromATM = {〈M,w〉|M accepts w} to ETM{〈M〉|L(M) =
∅}. Note that this was not a mapping reduction as we had to take the complement of the solver for ETM at
the end to properly complete the reduction.

Claim 8.57 If we have a mapping reduction from A to B and A is not Turing recognizable, then B is not
Turing recognizable.

Proof: If B is Turing recognizable, let B = L(M). Then we construct a recognizer for A by using the
mapping function on the input for A and running M on it.

Example: let LAE = {〈M〉|ε ∈ L(M)}. We want to find a mapping reduction from ATM to LAE .

Proof: A typical input to ATM is of the form 〈M,w〉. Our function f should map 〈M,w〉 to 〈M ′〉. M ′, on
any input, prints w on its input tape and runs M .

We can see that M ′ either accepts everything or nothing, but it accepts if and only if 〈M,w〉 ∈ ATM .
Because ATM is undecidable, we must have LAE undecidable as well.

Claim 8.58 If A �m B, then Ā �m B̄.

Proof:

We can use the same reduction as the original for the complement, because the function f preserves mem-
bership in sets.

8-1

8-2

Example: let EQTM = {〈M1,M2〉|L(M1) = L(M2)}. We will show this is unrecognizable by a mapping
reduction.

Proof: We will reduce from ATM . ATM takes input of the form 〈M,w〉. We want to make a construction
that builds two equivalent TMs if M accepts w and two inequivalent TMs if M does not accept w.

Let L(M1) = ∅ and M2 be a machine that on any input, runs M on w. This machine either accepts every
string or no strings, depending on whether M accepts w.

M1 ∼ M2 if and only if M rejects w, which is exactly what we wanted to show. Therefore, EQTM is
unrecognizable.

Example: let’s also prove that EQTM is also not recognizable, via mapping reduction.

Proof:

If we can show a mapping reduction from ATM to EQTM then we know that ATM has a mapping reduction
to EQTM , and EQTM is therefore unrecognizable.

Let’s make L(M1) = Σ∗ and M2 works exactly as before. The same process shows that M1 ∼M2 if and only
if M accepts w. Therefore, by examining the complements of these languages, we have a reduction from
ATM to EQTM , so neither EQTM nor its complement are recognizable.

Definition 8.59 A property of Turing machines is a function from TM descriptions to {0, 1}

Definition 8.60 A property of Turing machines is a language property if only depends on the language
recognized by the TM and not on the description of the TM itself. That is, the property is true for any
machine M recognizing a language L.

Let LP = {〈M〉|M has property P}

Definition 8.61 A property is non-trivial if there is some Turing machine that has the property and some
that does not. That is, LP is not the set of all TMs nor is it empty.

Claim 8.62 (Rice’s Theorem) LP for any non-trivial language property of Turing machines is undecidable.

Proof:

Let P be a non-trivial language property and LP be the language of the property. We will show, by
constructing a mapping reduction, that LP is undecidable.

Consider ATM . Assume that a Turing machine that accepts the empty language does not have property P
(this is without loss of generality, because we can always consider P instead). On input 〈M,w〉, create a
machine M ′ which, on any input x, first runs M on w. If M rejects, then M ′ rejects. Otherwise, then, runs
some Turing machine T with property P on input x.

If M does not accept w, it may be because it rejects, or runs forever. In both cases, M ′ rejects. In the first,
it explicitly does so. In the second, it never gets to the second step, and therefore rejects. So L(M ′) = ∅,
which does not have property P .

If M accepts w, then L(M ′) = L(T). T has property P , but since P is a language property, M ′ has the
property as well. Therefore, the reduction results in M ′ having property P if and only if M accepts w. Since
ATM is undecidable, LP must be as well.

8-3

Lecture 9: Finishing Decidability; Starting Complexity

CIS 511: Theory of Computation Spring 2017

Lecture 9: Finishing Decidability; Starting Complexity
Professor Sampath Kannan Zach Schutzman

Finishing Undecidablility

Recall Rice’s Theorem states that any non-trivial language property of Turing machines is undecidable. We
showed this via mapping reduction from ATM .

Let’s look at one more undecidable language. We’ll think about randomness. Consider a Turing machine M
on input x. At the end of computation, the tape has y on it.

Definition 9.63 The descriptive or Kolmogorov-Chaitin complexity of a string K(y) is the length of
the shortest description 〈M〉, w such that M on input w halts with y on its tape.

How do we go about writing the description of a Turing machine? One simple solution would be to duplicate
each symbol in the representation, then terminate with a non-duplicated pair. For example, 10110101
becomes 110011110011001110, where 10 is the terminating pair. Alternatively, we can write the length of
the machine with the doubling, finished with a non-duplicate pair.

For any x, K(x) ≤ |x|+c, for some constant c. To see this, just let M be the machine that immediately halts.
It has some length c′, which is fixed and should be fairly small. Using our first naive encoding, 2c′ + |x|+ 2
is sufficient to encode x.

Definition 9.64 A string x is incompressible by c if K(x) ≥ |x| − c. That is, x has no description that
is c shorter than itself.

Definition 9.65 A string is incompressible if K(x) ≥ |x|.

Claim 9.66 There exist incompressible strings of every length.

Proof: Note that there are 2n strings of length n (on a binary alphabet). The number of shorter descriptions

is
n−1∑
i=0

2i = 2n − 1. There are strictly fewer descriptions than strings, so there must be some string not

representable by a shorter length, i.e. incompressible.

How many strings of length n are compressible by 2? We want a description of length at most n − 3. So
n−3∑
i=0

= nn−2 − 1. That is, at least three quarters of strings of any length are incompressible by 2.

If x, y are strings, and c a constant:

• K(xx) = K(x) + c

9-1

9-2

• K(xy) ≤ K(x) +K(y) + 2 log2(K(x)) + c, because we need to encode a length for x at the beginning.

Let L = {x|x is incompressible by 2}. Is L decidable?

Claim 9.67 No.

Proof:

Assume, for the sake of contradiction, that L is decidable, and has a decider D. D has description length
c. Define a machine M , which generates each string of length N , then calls D on that string. M halts at
the first string which D says is incompressible. M needs N as input, which has length log2(N), plus it has
D’s description, of length c, plus some other constant piece to describe M with length c′. So we have input
of string 2(c + c′ + log(N)) which D says is incompressible. But this string of length 2(c + c′ + log(N)) is
shorter, therefore the string is compressible, which is a contradiction.

Time Complexity

Definition 9.68 A step of a Turing machine is one execution of a transition.

Suppose M is a deterministic TM to decide L.

Definition 9.69 We say M runs in time f(n) if for any input of length n, M terminates in at most f(n)
steps.

Definition 9.70 The complexity class DTIME(f(n)) is the set of all languages L for which a deterministic
Turing machine takes O(f(n)) steps and decides L.

Example: DTIME(n)⊂ DTIME(n2)

Example: Let L = {0k1k|k ≥ 0}. A TM to decide this can do our usual matching thing, where we move
back and forth, matching characters. This requires O(n2) steps. We therefore have L ∈DTIME(n2). Can we
do better? Yes. Cross off every other 0, then every other 1, and at each pass, check the parity of the number
remaining characters. If this is ever odd, reject. If we ever cross out all of one character and have some of
the others, reject. Otherwise, accept. To do this, we do log(n) rounds of crossing out, and we need 2 passes
of n steps to do each round, for complexity of n log(n). We can therefore say that L ∈DTIME(n log n).

It turns out we can’t do better than this. Any language that a single-tape deterministic TM decides in time
o(n log n) is regular. We know L is not regular, so we can’t do better than O(n log n).

Lecture 10: Time Complexity, Continued

CIS 511: Theory of Computation Spring 2017

Lecture 10: Time Complexity, Continued
Professor Sampath Kannan Zach Schutzman

Asymptotics

Definition 10.71 An algorithm with running time t(n) takes no more than O(t(n)) steps on any input of
size n. This is sometimes called worst-case complexity.

Recall the class DTIME(t(n)) is the set of languages L for which there exists a single-tape Turing machine
that decides L in O(t(n)) time.

What about a multi-tape machine? We have seen that the language L = {wwR|w ∈ {0, 1}∗} can be decided
in O(n) on a two-tape TM but is in Ω(n2) on a single-tape machine. This language is in DTIME(n2) because
we consider only single-tape machines.

The Class P

Definition 10.72 The class P is equal to
⋃
k≥0

DTIME(nk). That is, the class of languages decided in

polynomial time on a single-tape deterministic Turing machine.

Why is P an important class? First, a problem being in P implies there is a method of solving that problem
without enumerating all possible solutions, which would typically require exponential time. Second, P is a
robust class with a lot of nice compositional properties. The sum, product, and composition of polynomials
is a polynomial. This means that if we have a polynomial-time subroutine, if we call it a polynomial number
of times, our algorithm is still polynomial-time. Thirdly, we have the Extended Church-Turing Thesis, which
states that every reasonable model of computation can simulate any other reasonable model of computation
with only polynomial-time slowdown. This implies that the class P is invariant under models of computation
(numbers of tapes, modern computers, quantum computers). We don’t actually know that if is true, but
there is no proof yet that it isn’t correct.

Some languages we know are in P :

• PATH = {〈G, s, t〉|G a digraph s, t vertices, there is an s− t path}.
If G has m vertices, then there may be mm paths to explore. But, we can run BFS from G starting at
s. If there exists a path, we eventually reach t. As a side note, BFS requires m bits of space, keeping
track of whether we have visited a node or not. Open question: can we do better?

• UPATH - the same, but for undirected paths.

• GCD: given a, b ∈ N, find the greatest common divisor of a and b. The input size is log a+ log b. The
Euclidean algorithm is actually in P .

10-1

10-2

The jury is still out on:

• FACTORING = {〈N,K〉|N has a factor strictly between 1 and K}. This is a sufficient subroutine
to factor an integer, and if this is in P , then integer factorization is as well. Note that the language
PRIME, which determines if a number is prime is actually in P , but is not sufficient to do factorization
(as far as we know).

The Class NP

Definition 10.73 A non-deterministic Turing machine is called a decider if it halts on every branch.

Definition 10.74 The running time of a non-deterministic Turing machine on an input x is the maximum
number of steps taken on any branch.

Definition 10.75 A language L is in NTIME(t(n)) if there is an NTM M that decides L in time O(t(n))
on all inputs of length n.

Let M be an NTM that runs in time f(n). Then on all of its branches, M halts in time at most f(n) on all
of its branches. We showed earlier how to make a deterministic TM that simulates an NTM. The branching
tree has height at most f(n), and the number of possible transitions at each step was some number B. Then
the number of nodes in the tree is at most bf(n). This is no longer polynomial. To our knowledge, simulating
a non-deterministic decider on a deterministic decider results in an exponential blowup in running time.

We therefore can say that NTIME(f(n)) ⊆ DTIME(2O(f(n)))

Definition 10.76 The class NP is equal to
⋃
k≥0

NTIME(nk). That is, the class of languages decided in

polynomial time on a non-deterministic Turing machine.

Some languages in NP :

• SAT = {φ|φ is a Boolean formula with some satisfying assignment}

• TSP : given a weighted graph, does there exist a tour with cost at most B? We can get around the
branching factor being a function of the input by introducing a log n depth factor at each step to
identify each vertex with a binary index.

Lecture 11: Even More Time Complexity

CIS 511: Theory of Computation Spring 2017

Lecture 11: Even More Time Complexity
Professor Sampath Kannan Zach Schutzman

More About NP

Recall, a language is in NP if it can be decided by a non-deterministic Turing machine in polynomial time.

Recall the language SAT = {φ|φ is satisfiable}. If φ is satisfiable, then there exists some satisfying
assignment, and if an oracle gave you some satisfying assignment, you could very easily use this to verify
that φ is satisfiable (just plug in).

Definition 11.77 Alternatively, a language L is in NP if there is a polynomial time deterministic Turing
machine V such that L = {x|∃y : V accepts (x, y)}. In English, V is a verifier and y a certificate. NP
is the class of languages which, given a certificate, a verifier takes a language and a solution and decides
whether x belongs to L. y is a ‘proof’ of x being in L.

Some more example of languages in NP :

• A clique is a set of vertices in a graph which are all pairwise adjacent.

The language CLIQUE = {〈G, k〉|G has a k-clique} is in NP . We can see this alternatively by
thinking about an NTM that guesses which nodes are in the clique or by considering a certificate, we
can check whether the provided vertices actually form a clique by verifying that each pair of vertices
are actually pairwise adjacent.

Claim 11.78 The two definitions for NP are equivalent.

Proof: Let M be an NTM that recognizes L in polynomial time. Therefore, there is some accepting path
in the branching tree, with path length polynomial in the input length. Specifying this path is an encoding
of the address of the leaf at the end of the path. Since the height of the path is at most polynomial in the
length of the input, we can encode this address in polynomial length. A verifier can then simulate M only
on that branch, which decides in polynomial time.

We can see the other direction by having the NTM non-deterministically guess the certificate. Since this is
polynomial in length, it can be done in polynomial depth.

NP -Complete Languages

NP contains many problems that are important in practical optimization and decision problems. We would
love to be able to solve problems in NP in polynomial time. The big question in computer science is “IS
P = NP?”

11-1

11-2

NP -Complete languages are in a sense the hardest languages in NP . If a language NP -Complete and there
is a polynomial time algorithm for L, then P = NP .

Definition 11.79 A language is called NP -Complete if it is in NP and there exists a polynomial time
mapping reduction from any language in NP to it.

To find NP -Complete languages, we need to identify one first. SAT was the first proven NP -Complete
language (Cook-Levin Theorem). Then, if A is NP -Complete and A mapping reduces to B in polynomial
time, then B is called NP -Hard. If we also have that B is in NP , then B is NP -Complete.

Definition 11.80 A language B is NP -Hard if there is a polynomial time mapping reduction from a
language A ∈ NP to B

Proof: A sketch of the proof of Cook-Levin (SAT ∈ NP -Complete):

We’ve already seen that SAT is in NP .

Let L be any language in NP and V be the polynomial time verifier for L. View the computation of V
as a sequence of configurations (snapshots of tape and state after each transition). We want to construct a
mapping reduction that transforms an input x to V with into a boolean formula φ that is satisfiable if and
only if x is in L.

Call the certificate of L y. We don’t know y, but we can think about its bits as unknown boolean variables
y1, y2 The initial configuration of V looks like qox#y1y2 We can say that x is in L if we end up in
qaccept.

We need to make sure that V can’t be fooled. We need to be sure that w is a valid input and that if we are
given a sequence of configurations, that sequence must be legal according to the transition function of V .

V runs in polynomial time, and its input is polynomial in length and for polynomially many steps. Bound
the length of the input by l and the number of steps taken by l (one of these can be a loose upper bound).
Let’s make boolean variables xijσ where i, j ≤ l and σ ∈ Γ∪Q. Set xijσ equal to 1 if cell i at step j contains
σ and 0 otherwise.

We can say that x ∈ L if and only if there exists an accepting table of V on w, where an accepting table
refers to the legal sequence of tape configurations ending in an accept state. We want to create a formula
which is satisfiable if and only if there is an accepting table of V on w.

We will build the corresponding φ:

These conditions define a legal beginning and end configuration:∧
i,j

∨
σ
xijσ - at least one symbol in each cell

∧
σ1,σ2

¬xijσ1 ∨ ¬xijσ2 - at most one symbol in each cell

∧
(x11q0)

∧
(x12w1

) . . . - the input row contains q0 and the correct value for the input w∧
(xl1qaccept) - V takes exactly l steps and brings head to leftmost cell

We need to make sure the steps are consistent with legal transitions:

We also AND some variables constructed from the transition function to ensure the value at cell i, j is either
the same, or influenced by the ones just left or right at the previous step

11-3

If this formula is satisfiable, then we have a legal table, hence w is in L. If there is no table, then the formula
cannot be satisfiable.

Lecture 12: NP -Completeness

CIS 511: Theory of Computation Spring 2017

Lecture 12: NP -Completeness
Professor Sampath Kannan Zach Schutzman

Cook-Levin and NP -Complete Languages

From last time, we sketched a proof of the Cook-Levin Theorem - any problem in NP can be converted into
an instance of SAT in time and size polynomial in the original input.

Let’s show that 3SAT = {φ|φ is a satisfiable Boolean formula in 3-CNF} is NP -Complete.

Proof: We will show that SAT reduces to 3SAT and 3SAT is in NP to show 3SAT is NP -Complete,
because Cook-Levin gives us the reduction from any NP language to SAT , by the transitivity of composition
of polynomial reductions.

The reduction is as follows:

Take some instance φ of SAT . If we want y ⇔ x1 ∧ x2, then we can say (¬x1 ∨ ¬x2 ∨ y). We don’t need to
worry about the ORs. Taking the AND of all of these clauses gets us a logically equivalent φ′ ∈ 3SAT .

For the same reason SAT is in NP , 3SAT is as well, as it is easily verifiable.

Karp took Cook’s proof and showed a number of problems are NP -Complete. Some of these are:

• Independent Set - a subset of vertices, no two of which are adjacent (inputs are 〈G, k〉, for IS of size
k). The reduction from 3SAT involves creating triangle for each clause and connecting negations of
corresponding variables. Set k to the number of clauses.

• CLIQUE is NP -Complete. Take a 〈G, k〉 instance of IS. Create GC where two vertices are adjacent
in GC if and only if they are not adjacent in G. Now, the IS in G is exactly a k-clique in GC .

• V ERTEX COV ER is a vertex set of size k such that every edge is incident to some element in the
set. The complement of an independent set is a vertex cover, by definition, so a |V | − k independent
set is a k vertex cover.

12-1

Lecture 13: Wrapping up NP and Beginning Space Complexity

CIS 511: Theory of Computation Spring 2017

Lecture 13: Wrapping up NP and Beginning Space Complexity
Professor Sampath Kannan Zach Schutzman

More NP -Completeness

Other problems are NP -Complete, the reduction for 3COLOR creates gadgets from each clause and each
variable (see any Algorithms book).

There is an obvious reduction from 3COLOR to 4COLOR (and beyond). Add a new vertex, connect it to
every vertex in your original graph.

SUBSETSUM , the question of whether a set of numbers contains a subset that sums to a particular value
k is NP -Complete. The reduction is from 3SAT . Given a formula φ with m clauses and n variables, we
create 2n numbers with n+m base 7 digits. Each variable gets a 1 in positions indicating the index of the
variable and the clauses it appears in. φ is satisfiable if and only if there is a subset that sums to 11 . . . 111 in
the first n positions, and 4 . . . 44 in the remaining m positions, by introducing some dummy numbers which
are all zeros in the first n positions and 1 or 2 in the corresponding clause position.

We know that P ⊆ NP , NP -Complete ⊂ NP

Definition 13.81 A language L is in Co-NP if its complement is in NP . Equivalently, given x /∈ L, a
verifier can check non-membership given the right certificate (easy to check that something is not a solution).

Example: TAUT = {φ|φ is satistfied by every assignment} is in Co-NP . If a φ is not in L, then any
non-satisfying assignment can be quickly checked.

We don’t know if NP = Co-NP .

If P = NP , then NP = Co-NP .

If NP 6= Co-NP , then P 6= NP .

Space Complexity

Definition 13.82 Space complexity refers to the number of cells of tape scanned by the head of a Turing
machine in running an input.

Definition 13.83 DSPACE(s(n)) is the set of languages recongized by a deterministic TM in O(s(n))
space.

Definition 13.84 NSPACE(s(n)) is the set of languages recognized by a non-deterministic TM in O(s(n))
space.

13-1

13-2

Let’s look at SAT ∈ NP . What is its space complexity? Let’s say n is the length of the input and k is the
number of variables. If we don’t care about time, we can represent the assignment as a k-bit number and
try one assignment at a time. We only need n + k + c (where c is some small fixed workspace). Therefore,
SAT ∈ DSPACE(n).

Let LNANFA = {〈M〉|M is an NFA, L(M) 6= Σ∗}. We don’t know if this is in NP because the naive
approach for a verifier does not necessarily have a polynomial length certificate. We can show that it is in
NSPACE(n).

Lecture 14: More Space Complexity

CIS 511: Theory of Computation Spring 2017

Lecture 14: More Space Complexity
Professor Sampath Kannan Zach Schutzman

DSPACE v NSPACE

Recall, we showed last time that SAT ∈ DSPACE(n).

We were thinking about the language NANFA = {〈M〉|M is an NFA, L(M) 6= Σ∗}. We showed in
homework that the shortest string not accepted by an NFA can be exponential in the number of states of
the machine. Recall also that for the DFA problem, the upper bound is simply the number of states in the
machine. We can transform a k-state NFA into a DFA with at most 2k states, so we can upper bound the
length of the shortest non-accepted string by 2k − 1.

Our input is an NFA with description length n. The number of states is approximately equal to n (maybe
n2, we don’t really care). A naive deterministic approach involves checking every string. Let’s design a
non-deterministic space algorithm to do the search. We non-deterministically guess one symbol at a time.
The depth of the tree is 2n − 1, which is still exponential. But we don’t really need to remember the whole
path, just the current possible states and the counter of the depth. This count is length order n and the
set of current states is also order n. We therefore have an NSPACE(n) algorithm to solve this, hence
NANFA ∈ NSPACE(n).

Claim 14.85 Savitch’s Theorem: NSPACE(f(n)) ⊆ DSPACE(f(n)2). That is, we only get a quadratic
increase by moving to a deterministic model.

Proof:

(For space f(n) = Ω(n))

Given an O(f(n))-space NDTM M , we will design an O(f(n)2)-space DTM D which recognizes the same
language.

The input x determines the initial configuration of M , Cinit. We are interested in whether M can get to
some accepting configuration with the qa state in the first cell and the rest of the tape blank (canonically).
We have an upper bound of 2O(f(n)) steps needed to reach such a configuration.

Write Ci �Mt Cj to say that there is some valid computation in M that moves from configuration Ci to
configuration Cj on some branch in at most t steps. We want to know if Cinit �M2O(f(n)) Caccept. We can

approach this with divide-and-conquer by asking whether Cinit �M
2O(f(n))

2

Cm �M
2O(f(n))

2

Caccept for some

intermediate configuration Cm.

At each step, we need to check whether the start configuration can reach the end configuration. Since we
can reuse space, we need to remember log 2O(f(n)) = O(f(n)) intermediary configurations, each of length
O(f(n)). This requires total space of O(f(n)2)

Definition 14.86 PSPACE is defined as
⋃
k

DSPACE(nk). NPSPACE is
⋃
k

NSPACE(nk).

14-1

14-2

Corollary 14.87 By Savitch’s Theorem, PSPACE = NPSPACE. Nobody talks about NPSPACE be-
cause it is a redundant name for PSPACE.

Space vs Time Complexity

We have DTIME(f(n)) ⊆ DSPACE(f(n)), as if you can only take f(n) steps, you are only using f(n)
cells (at most). The same holds for the non-deterministic case.

We also have that DSPACE(f(n)) ⊆ DTIME(2O(f(n))), because we can enumerate all of the 2O(f(n))

configurations of the machine in f(n) space, one at a time. To see that we only see each configuration at
most once, observe that even in the non-deterministic setting, if two branches have the same configuration,
the continuations of those branches must be identical, so we don’t need to check it more than once. Therefore,
without loss of generality, there is some accepting path that does not contain repeated configurations. We
can keep a ‘timer’ that terminates a branch when it has exceeded 2O(f(n)) steps, thus ensuring that every
branch terminates in at most 2O(f(n)) steps. The same holds for the non-deterministic case.

We now have P ⊆ NP ⊆ PSPACE. We don’t know if P 6= PSPACE, but this should be easier to prove
than P 6= NP .

The Class PSPACE-Complete

Definition 14.88 A language L is PSPACE-Complete if L is in PSPACE and for all A ∈ PSPACE,
there exists a mapping reduction from A to L in polynomial time.

Claim 14.89 The language of True Quantified Boolean Formulas (TQBF) is PSPACE-Complete.

Lecture 15: PSPACE Completeness

CIS 511: Theory of Computation Spring 2017

Lecture 15: PSPACE Completeness
Professor Sampath Kannan Zach Schutzman

The Class PSPACE-Complete

Definition 15.90 A language L is PSPACE-Complete if L is in PSPACE and for all A ∈ PSPACE,
there exists a mapping reduction from A to L in polynomial time.

Definition 15.91 A quantified boolean formula is a formula of the form ∀x1∃x2∀x3 . . . φ(x1, x2, . . .),
where φ is a boolean formula over the xi.

Claim 15.92 The language of True Quantified Boolean Formulas (TQBF) is PSPACE-Complete.

Proof:

We’ll think of a machine that decides this language as taking a quantified boolean formula as input and
accepting if it is true, rejecting if it is false.

This language is obviously in PSPACE, we can simply check each allowable assignment and accept if the
formula is true.

To show that it is PSPACE-Complete, we need to show that every other PSPACE language can be reduced
to it in polynomial time. Let L be a language in PSPACE. Without loss of generality, we can say that a

decider for L takes O(2n
k

) time.

We saw in the Cook-Levin Theorem how to think of states of computation as boolean formulas, and we
will do something similar here. Let Cinit the initial configuration and Caccept as the canonical accepting
configuration. We write Φ(Ca, Cb, t) to denote the quantified boolean formula corresponding to ‘there exists
a sequence of computation steps of length at most t such that the machine moves from configuration Ca to

Cb. We want to find formula equivalent to Φ(Cinit, Caccept, 2
nk

) which is true if and only if the input x to
the decider for L is in L.

We start by observing that if x ∈ L, then there must be some intermediate configuration Cm which the
machine passes through in its computation. We can then write

Φ(Cinit, Caccept, 2
nk

) ⇐⇒ Φ(Cinit, Cm,
2n

k

2
) ∧ Φ(Cm, Caccept,

2n
k

2
)

We can also consider quarter-way and eighth-way points, and so on and do the same thing, however, we get
an exponentially large formula by the time we get down to step sizes of t = 1.

We get around this by introducing two new variables C3, C4 and universally quantifying them over our
configuration pairs (C1,m), (m,C2) such that we have

Φ(C1, C2, t) = ∃m∀(C3, C4) ∈ {(C1,m), (m,C2)}(Φ(C3, C4,
t

2
))

15-1

15-2

We only need polynomial space for this, hence L is reducible to TQBF , and TQBF is PSPACE-Complete.

Example: The language Generalized Geography (GG) is PSPACE-Complete. GG is a two player game
on a directed graph. One player picks a node, then the other picks a node for which there exists an arc from
the previous player’s choice into that node. A player loses if there are no nodes for her to legally choose (i.e.
the previous player picked a node with out degree zero). Player One’s first choice is a designated start node.
The language GG is the decision problem of whether, given a directed graph with a start node, Player One
can always win given perfect play.

We can think of this as a TQBF in the following way: Player One has a winning strategy if there exists
a node with out-degree zero such that for any previous choice made by Player Two there exists a previous
choice by Player One, and so on.

Lecture 16: Space Complexity, Continued

CIS 511: Theory of Computation Spring 2017

Lecture 16: Space Complexity, Continued
Professor Sampath Kannan Zach Schutzman

Logarithmic Space

Recall, L and NL are the classes of problems recognizable in logarithmic space by a deterministic and non-
deterministic Turing machine, respectively. These machines are modeled as having a read-only input tape
and a read/write work tape. The space complexity is determined by the number of cells used on the work
tape.

The language PATH = {〈G, s, t〉|G is a digraph with a path from s to t}.

Claim 16.93 PATH is in NL

.

Proof: Nondeterministically guess a sequence of neighboring vertices, for at most n steps. This needs only
O(log(n)) space to track the current vertex and a counter.

It turns out, PATH is one of the ‘hardest’ languages in NL, that is, it is NL-Complete.

We need to show that PATH is in NL (done) and that any NL language can be reduced to it. What is
our notion of reduction? Before, we had polynomial time reductions, but NL ⊂ P , so a polynomial time
(and hence polynomial space) could be powerful enough to solve our language. We therefore restrict our
reductions to the class L, that is, a log-space reduction.

Definition 16.94 A log-space transducer is a machine with a read-only input, a read-write work tape,
and a write-only output tape. The work tape has size O(log(n)) and the write tape can have polynomial
length in n.

Definition 16.95 A language A log-space reduces to a language B (written A �Lm B) if there is a log-space
transducer computing a function f such that x ∈ A ⇐⇒ f(x) ∈ B.

Claim 16.96 PATH is NL-Complete

. Proof:

Let A be any language in NL. We show that there exists a log-space transducer reducing A to PATH.

We have some input w ∈ Σ∗ to A and we want to construct a log-space transducer to convert it into a 〈G, s, t〉.
The high level idea is to construct a graph with vertices corresponding to configurations of a machine
recognizing A, s and t corresponding with initial and accept configurations, and edges for configurations
which are one computation step apart.

A configuration of the A machine is specified by the location of the head in the input tape, the current state,
and the contents of the work tape. This requires only O(log(n)) bits to specify, as we need O(log(n)) to

16-1

16-2

keep track of the position in the input, plus O(log(n))) to represent the work tape, plus some constant to
track the current state. The number of possible configurations is 2O(log(n)), which is polynomial in n.

The graph G has one node for each possible configuration, the node s will be the initial configuration, and the
node t will be the accept configuration in canonical form. There will be an edge (ci, cj) if the machine for A
can go from configuration ci to Cj in one step. There may be multiple edges from each node, corresponding
to nondeterministic choice. There exists an s-t path in this graph if and only if w ∈ A.

We now only need to show that a log-space transducer can compute this reduction. The transducer will first
construct the vertices of G, then the edges.

First, the transducer knows the length of each configuration, so it uses its O(log(n)) space to iterate through
the possible configurations and if it’s a valid configuration c, writes c to its output tape. After this, all of
the nodes in the graph are written to the output. Then, for the edges, check each pair of configurations to
determine if the second is reachable from the first in 1 step.

This procedure only requires O(log(n)) work space and produces the appropriate G, s, t, hence is is a log-space
reduction and the proof that PATH is NL-Complete.

Note that any function computable by a log-space transducer can be computed in polynomial time, a
transducer can never repeat a configuration (else it would not be a decider), and there are only polynomially
many configurations.

Claim 16.97 NL ⊆ P

Proof: We know that PATH ∈ P (we can do breadth-first search). Therefore, given any A ∈ NL and
input w, we can, in polynomial time, log-space reduce A to an instance of PATH with input f(w) and use
a polynomial time algorithm for PATH. This gives a polynomial time algorithm for A.

The Class Co-NL

Definition 16.98 A language A is in Co-NL if its complement is in NL.

From before, a language B is in NL if there is a nondeterministic log-space Turing machine M such that
given w in B, M(w) accepts on some path. If w /∈ B, all computation paths reject. Co-NL is the opposite.
If w ∈ C ∈ Co-NL, then all paths accept. If w /∈ C, there exists at least one rejecting path.

Claim 16.99 NL = Co-NL

Proof:

We have PATH as anNL-Complete. Let’s define the language PATH = {〈G, s, t〉|G is a digraph with no s-t path}.
The same reduction as before shows that PATH is Co-NL-Complete. We prove this theorem by showing
PATH ∈ NL. This implies NL ⊆ Co-NL, which by symmetry of complements gives us NL = Co-NL.

We want a nondeterministic log-space Turing machine M which, given 〈G, s, t〉 and a number c equal to the
number of nodes reachable from s, accepts if there is no path from s to t in G. This machine will guess
whether there is or is not a path from s to v1. If there is one, using a log-space PATH subroutine, continue
guessing paths from s to v2. If every path in this side rejects, we know there is no path from s to v1, so we

16-3

continue down the no branch. When we find a path from s to a vertex, we increment a counter. We continue
checking for each vertex except t. If there is no s-t path, the counter will reach c before we finish exhausting
vertices.

We now need to think about how to get c. Let ci be the number of vertices reachable from s by paths of
length at most i. We can, given ci, compute ci+1. We have c0 = 1, so if we have a procedure to compute the
increments, we can inductively find cn−1. The idea will be to note that vertices reachable in at most i + 1
steps have an edge from something reachable in at most i steps.

Lecture 17: Space Hierarchy

CIS 511: Theory of Computation Spring 2017

Lecture 17: Space Hierarchy
Professor Sampath Kannan Zach Schutzman

Finishing up NL = Co-NL

Claim 17.100 NL = Co-NL (continued from last time)

Proof:

(Continued)

We were thinking about how to get the count of reachable vertices, c. Let ci be the number of vertices
reachable from s by paths of length at most i. We can, given ci, compute ci+1. We have c0 = 1, so if we
have a procedure to compute the increments, we can inductively find cn−1. The idea will be to note that
vertices reachable in at most i+ 1 steps have an edge from something reachable in at most i steps.

Similarly, denote si the set of vertices reachable from s in i or fewer steps.

The following procedure will compute ci+1: For each vertex vj , vj ∈ si+1 if vj ∈ si or there exists a vertex u
such that u ∈ si and (u, vj) is an edge in G. We will nondeterministically guess whether each vertex v is in
si. To confirm it, we use a NL procedure for PATH limited to paths of length i. We’ll keep a counter for
the number of things we find in si and the number of things in si+1. For each vertex, if we find it in si, then
it is in si+1, so we increment both of our counters. Else, if there is an edge from something in si to it, then
we increment our counter for si+1. Otherwise, we move on to the next vertex. After checking all vertices we
now have the number of things in si+1 on the correct branch of the PATH algorithm, which is the one that
correctly computed the number of things in si.

Inductively, we now know our c, as we do this procedure to find c = cn−1. Since we have c, we have an NL
algorithm to decide PATH, hence L = Co-NL.

We have L ⊆ NL = Co-NL. Whether L equals NL is unknown. The language UPATH, which is PATH
on undirected graphs is obviously in NL. It was proven about 10 years ago that UPATH is actually in L.

We can say that Savitch’s Theorem still applies. That is, NSPACE(f(n)) ⊆ DSPACE(f(n)2). Therefore,
NL ⊆ L2, deterministic log-squared space.

Space Hierarchy Theorem

We now are ready to show our first proper separation of time and space classes.

Definition 17.101 A function f(n) is ‘nice’ if it is fully space-constructible. That is, there is a Turing
machine which given input, say 1n, can compute f(n) using no more than f(n) space.

17-1

17-2

Space-constructible functions include all the familiar ones, like monotonic polynomials, exponentials, loga-
rithms, roots, etc.

Claim 17.102 (The Space Hierarchy Theorem) Let f(n) be a ‘nice’ function. Then there is a language
L which can be decided by an f(n)-space deterministic Turing machine, but not by any deterministic Turing
machine using o(f(n)) space. That is, for f(n), there is a language requiring at least O(f(n)) space to decide
by a deterministic Turing machine.

Proof:

We prove this by constructing such a language. via diagonalization. Define a deterministic Turing machine
M which uses f(n) space and L(M) cannot be decided by any Turing machine using o(f(n)) space. We’ll
think of M as being different from every machine which uses o(f(n)) space.

M on input 〈x〉 first checks if 〈x〉 is a description of a Turing machine. If not, reject. If it is, M should
run 〈x〉 x. If x finishes in f(n) space, then M outputs the opposite answer as x. M stops and rejects if 〈x〉
exceeds f(n) space.

We also need to count the steps of x to make sure we don’t exceed 2O(f(n)) time.

We also have an issue because O(f(n)) and o(f(n)) are asymptotic notions, so we may get something wrong
for relatively small n.

We’ll modify the behavior of M slightly. On any input, it checks to see if it is the description of a Turing
machine, followed by 01∗. If not, reject. If so, simulate x on the whole input. As before, if x properly
terminates, we output the complement of its answer. Now, we have that if x uses g(n) space, we know there
exists an n0 such that for all n > n0, g(n) ≤ f(n), because there is a sufficiently long input string such that
x requires no more space than M .

We know L (PSPACE, and by Savitch’s Theorem, NL (PSPACE. We also have, if r1 < r2 ∈ R+, then
DSPACE(nr1) (DSPACE(nr2).

Similar results hold for NSPACE.

Time Hierarchy (briefly)

We want to say that if g(n) ∈ o(f(n)), for time-constructible function f(n), there is a language inDTIME(f(n))
that is not in DTIME(g(n)), but this isn’t necessarily true. If we try the same idea as for Space Hierarchy,
we run M on x for f(n) steps, but the problem is that we need to somehow count the steps, which requires
keeping a counter of size O(log(f(n))), which may all need to be altered after a step. Additionally, we need
access to the transition function of x, which we can keep in space, but in time, we need to track back and
forth for lookups, which again adds a quadratic blowup. We can keep this description along with us, but the
counter is still a problem to update.

We therefore need to rephrase the statement of the theorem to be

Claim 17.103 If there is a language in g(n) ∈ o(f(n))/log(f(n)), then there is a language in DTIME(f(n))
not in DTIME(g(n)).

The proof follows the same structure as the Space Hierarchy Theorem, including log(f(n)) additional steps
to update the counter.

Lecture 18: Randomized Complexity

CIS 511: Theory of Computation Spring 2017

Lecture 18: Randomized Complexity
Professor Sampath Kannan Zach Schutzman

Randomized Algorithms

Definition 18.104 A randomized algorithm is one in which we can toss random coins.

We don’t worry about how this randomness is produced, we just take it as given that we can make these
queries from an idealized source of randomness.

Definition 18.105 A randomized or probabilistic Turing machine may either move deterministically
or reach a state where it can flip a coin and move according to the random output. A probabilistic Turing
machine M is said to accept a string x ∈ L with probability equal to the sum of the probabilities of the leaves
where M produces the correct answer.

Definition 18.106 The class Bounded Probabilistic Polynomial time (BPP) is the class of languages
recognizable by a randomized Turing machine which accept on inputs x ∈ L with probability at least 2

3 .

Claim 18.107 We can equivalently define BPP as having error 0 ≤ ε < 1
2 .

Proof: Suppose we have a machine M with error ε < 1
2 . Then we show there is an M ′ with error 1

2n on
inputs of size n. We simply have M ′ run M 2k times on input x and outputs the majority answer, where k
is constructed as follows:

To see this, consider our sequence of M ’s outputs, e.g. cccwwcwccwc A sequence with more than k ws
will cause an error in M ′. We want this to occur with probability at most 1

2n . Any particular sequence with
some number of cs and ws is ε#w(1 − ε)#c. So M ′ makes a mistake when #w ≥ k. But this is less than
εk(1− ε)k. There are at most 22k ‘bad’ sequences (this is all of them!). Thus, the total probability of all bad
sequences is less than or equal to 22kεk(1− ε)k = (4ε(1− ε))k. This is strictly less than one whenever ε < 1

2 .

We can then choose k to make the lower bound as low as we want for an equivalent definition of BPP .

What is the space complexity of probabilistic Turing machines?

Consider the language UPATH = {〈G, s, t〉| there is an st path in G}. This is in randomized log-space
(RL). We can do this by randomly choosing a neighbor at each step, not exceeding n3 steps on any branch.

Polynomial Identity

The problem of polynomial identity testing asks whether two multivariate polynomials f and g on n variables
are exactly identical. We have two black boxes, one for f and one for g. We want to know if f = g.

Denote Lnon−id = {〈f, g〉|f 6= g} for polynomials f and g. If f and g are univariate of degree less than or
equal to d, we can know if f = g just by testing d+ 1 different values.

18-1

18-2

Lemma 18.108 (Schwartz-Zippel) Let h be a non-zero polynomial on n variables of degree d. If values
x1 . . . xn are chosen uniformly and independently at random from a set S of size n, then the probability that
h(x) = 0 is less than or equal to d

n .

If we think of h = f − g, then we have the ‘bad’ event of getting unlucky of picking d + 1 points where
f(x) = g(x) even when f 6= g is sufficiently small.

Now we can come up with a randomized algorithm to recognize Lnot−id. We choose a set S of 3d points
from the domain of the variables. For each xi pick uniformly at random some ri ∈ S. Now, evaluate f(r)
and g(r). If we get different answers, accept. Otherwise, reject. If f and g are identical, then the algorithm
always correctly rejects. If f and g are different, the probability we picked a ‘bad’ point and make a mistake
is at most 1

3 , because we have d
3d probability by the lemma.

Definition 18.109 The language L is in Probabilistic Polytime (PP)if there is a probabilistic Turing
machine that gets the answer wrong with probability less than 1

2 .

This class is not really interesting. A PP algorithm for SAT picks a random assignment. If it satisfies the
formula, we accept. If not, flip a coin with probability marginally less than 1

2 to come up heads. If we get
heads, reject, otherwise, accept.

Lecture 19: Randomized Complexity, Continued

CIS 511: Theory of Computation Spring 2017

Lecture 19: Randomized Complexity, Continued
Professor Sampath Kannan Zach Schutzman

Randomized Polynomial (RP)

Last time we defined BPP as the class of algorithms with probabilistic polynomial time Turing machines
which correctly decided membership in a language with probability at least 1

3 (equivalently, strictly bounded
from 1

2). We showed last time that polynomial identity testing is in BPP (equivalently, deciding whether a
polynomial is identically zero).

We also have the class PP , which is not very interesting. PP allows error as high as 1
2 −

1
2n . Things like

SAT and beyond are in PP .

Definition 19.110 A language L is in Randomized Polynomial (RP) if there is a probabilistic polyno-
mial time Turing machine M such that given x ∈ L, M accepts with probability greater than or equal to 1

2 ,
and if x /∈ L, M always rejects.

We say RP has one-sided error, because we only make mistakes on strings in the language. If the algorithm
accepts, we know for certain that the string is in the language. If it rejects, we cannot say for sure.

Let’s look at polynomial non-identity testing again. Our algorithm from before always accepts when a
polynomial is identically zero, but sometimes makes mistakes if the polynomial is not, but we got unlucky.

We know that P ⊆ RP and P ⊆ BPP .

We can also do amplification on RP algorithms. We just run the algorithm k times and accept if any
execution excepts. Therefore, RP ⊆ BPP because we can run our RP algorithm twice to bring the error
probability below 1

3 .

We also have RP ⊆ NP . To see this, consider L ∈ RP . If x ∈ L, then our RP machine M accepts x with
probability at least 1

2 . There exists a sequence of ‘coin flips’ that cause M to accept on x. This serves as our
certificate with which we can verify membership by deterministically simulating M on x with the specific
sequence of random choices. Similarly, Co-RP ⊆ Co-NP . Equality and/or proper containment is unknown.

Let’s think about the problem of matrix multiplication checking. The language Lmmult = {〈A,B,C〉|A,B,C are n×
n matrices and AB 6= C}. Matrix multiplication is already known to be in P (O(n2.34...)). Therefore, veri-
fication is also in P . But, we can use randomization to verify in O(n2) steps.

Let’s suppose AB = D and we want to know if D = C. We can randomly sample cells in D to check if they
match cells of C. We can find and compare a pair of cells in n steps. But we want to think of this in a
worst-case or adversarial setting, where maybe C and D only differ at one entry. Then we need to check n2

entries for n steps each, which isn’t any better than solving the whole thing.

What we will do is, instead of randomly sampling, we just take a random vector v and check if (AB)v = Cv.
This at least has the property that if AB equals C then we accept. We can compute A(Bv) in n2 + n2

steps, then do Cv in n2 steps, so the process takes O(n2) steps. What is the probability of error? Suppose
D 6= C. What is the probability that Dv = Cv?. C and D differ in at least one entry, call it Dij 6= Cij . If v

19-1

19-2

is a binary vector chosen uniformly at random, suppose every value except vj chosen ahead of time, which
we will think of as a variable. When we multiply the ith row of D by v, we get some constant c1 + Dijvj .
Similarly, for the ith row of C, we get c2 +Cijvj . We now want to think about choosing vj . If c1 = c2, then
the choice of vj = 1 gives different answers. This occurs with probability 1

2 . On the other hand, if c1 6= c2,
then choosing vj = 0 shows the difference, which also occurs with probability 1

2 . Hence this algorithm is in
RP . We can improve this error probability by letting v have arbitrary, rather than binary entries.

Communication Complexity

Let’s think about a communication problem, originally called The Man on the Moon Problem. Let x be a
string on a spaceship, of which Ground Control has a copy y. Before executing x, the spaceship wants to
verify that their copy has not been corrupted, so it wants to communicate with Ground Control to confirm
x = y. We are concerned about the communication complexity of this problem; the number of bits we need
to communicate in order to accomplish this task. We will assume that communication is two-way, reliable,
and interactive.

We’ll use cryptographic convention and call the spaceship player Alice (A) and the Earth player Bob (B).

We will think of corruption of x as adversarial. If the length of x and y is n, to do this deterministically,
we need to exchange at least n bits to verify the whole string. To see this, suppose x1 6= x2 are two n-bit
strings.

Claim 19.111 We claim that any communication transcript on input (x1, x1) must be different from the
transcript on (x2, x2).

Proof:

Suppose the input is actually (x1, x2) and we assume for the sake of contradiction that the transcripts for
(x1, x1) and (x2, x2) are the same.

Without loss of generality, assume that Alice transmits the first bit, assuming the protocol for (x1, x1).
When Bob receives this, it’s consistent with the transcript for (x2, x2), so Bob sends the next bit assuming
the input is (x2, x2). This repeats and neither side has any information at any point to contradict their
assumptions that they are working on (x1, x1) and (x2, x2), respectively.

We therefore need 2n different transcripts to correspond to the 2n possible n-bit strings they have. By the
pigeonhole principle, at least one of these must have length 2n, because the number of binary strings of
length strictly less than n is 2n − 1.

Let’s think of a randomized protocol that uses fewer bits. Consider S = {2, 3, 5, 7 . . . } the set of the first
2n primes. Bob picks a random prime p from S and sends y mod p and p. Alice computes x mod p and
accepts if x mod p = y mod p. Since the 2nth prime is around 2n ln(2n), so we need O(log(n)) bits to send
it. Additionally, y mod p is no bigger than p, so it is also O(log(n)) in size. We have one sided correctness;
if x = y, Alice always accepts. But what happens when x 6= y?

Assume x 6= y are both n-bit strings. A bad situation would be our protocol failing because x mod p = y
mod p. We chose p randomly, so we want to know for how many primes in S do we have this bad case? If
x mod pi = y mod pi and x mod pj = y mod pj , then pi and pj divide x− y. So pipj divides x− y (this
holds for cases with more than two factors). The product of any n primes in S is at least 2n. If x 6= y, then

19-3

x − y 6= 0. We also have x − y ≤ 2n. If x and y agree modulo n different primes, then x ∼= y mod
∏
pk,

but this product is greater than 2n, which is impossible, hence x must be exactly equal to y.

We therefore know that x and y can be congruent modulo at most n primes in S. Since we pick a prime
from S at random, our probability of picking a bad one is at most 1

2 , which is what we wanted to show.

Lecture 20: Interactive Proof

CIS 511: Theory of Computation Spring 2017

Lecture 20: Interactive Proof
Professor Sampath Kannan Zach Schutzman

Interactive Proof

NP is the class of languages for which an infinitely powerful prover can convince a polynomial time verifier
of string membership by sending one message (the certificate). This is a non-interactive case.

We need to show that such proofs are both sound and complete. That is, if x /∈ L, no message from the
prover will convince the verifier, and for all x ∈ L, there is some message from the prover which will convince
the verifier.

We’ll denote P the prover, V the verifier, and P̃ a prover which may be adversarial. Completeness means
one good P exists. Soundness means no P̃ can falsely convince V of membership.

What if we allow for interaction? Are there languages for which there are interactive proofs that are not
in NP? Well, if the prover is all-powerful, because the verifier is deterministic, the prover can simulate the
interaction, and can produce as a proof a transcript of the potential interaction. Therefore, interaction alone
only lets us prove things in NP .

The problem of Graph Non-isomorphism LGNI asks whether two input graphs G,H are not isomorphic ,
where two graphs are isomorphic if there exists a bijection f from V (G) to V (H) such that (u, v) ∈ E(G) if
and only if (f(u), f(v)) ∈ E(H). Graph Isomorphism is in NP (the certificate is the bijection f). LGNI is
not known to be in NP .

We do have an interactive proof for LGNI .

Proof:

Suppose we have two graphs G,H and we want to try to prove G 6' H. V will pick one of G,H at random,
call it K. V then permutes the adjacency matrix of K to form K ′ which is, by definition, isomorphic to K.
V then sends K ′ to P , and P must figure out whether K ′ ' G or K ′ ' H.

Suppose G 6' H. An honest prover will try to find an isomorphism between K ′ and G and K ′ and H, and
will find isomorphism for exactly one of them. If G, H are actually isomorphic, then the prover will have no
idea whether K ′ was derived from G or H, and it is equally likely to have been generated by V from either.
In this case, P will have to guess and will get it wrong half of the time. Therefore, a prover cannot convince
a verifier that two truly isomorphic graphs are not isomorphic, so we have soundness and completeness.

Definition 20.112 The class interactive proof IP is the class of languages L such that there exists a
prover P and a probabilistic polynomial time verifier V and a communication protocol such that P can
convince V that some x ∈ L with probability at least 2

3 . For any x /∈ L and any prover P ′, V is convinced
x ∈ L with probability at most 1

3 .

Claim 20.113 As it turns out, IP = PSPACE.

20-1

20-2

Proof:

First, we will show IP ⊆ PSPACE. Let’s think about the prover as a tree, where it chooses one of 2l

messages of length l and the verifier does the same. A leaf of the tree corresponds to the verifier accepting or
rejecting, with probability 0 or 1. At a prover node, we assign it a probability equal to the maximum across
its children, because the prover wants to convince the verifier. At an internal verifier node, we assign it the
average probability of its children. We just need to answer if the probability assigned to the root is more
or less than 2

3 . If greater, x ∈ L, else x /∈ L. Since the tree has polynomial breadth and depth, we can use
depth-first traversal and only store polynomially many answers at a time, therefore, this is in PSPACE.

Now, to see PSPACE ⊆ IP , we will start by showing #SAT (φ), the number of satisfying assignments of φ,
is in IP . We want to show that P can convince V that φ has exactly k satisfying assignments (we’ll assume
φ is in 3-CNF).

Let fi(a1, a2 . . . ai) be the number of satisfying assignments of φ restricted to x1 = a1, x2 = a2 Here
is a proof that’s too long, but it will be useful conceptually. Suppose the prover sends f0(), and V checks
that f0() = k, then f1(0), f1(1). The sum f1(0) + f1(1) should equal f0(), and V checks that this is
true. We continue this procedure sending all partial assignments, and the verifier checks appropriate sums
(f2(11) + f2(10) = f1(1)). At the final round, we check all full assignments, and the verifier knows what
values to expect in the last round. If the prover tries to lie it must cascade through the tree structure and
the verifier can catch it in the last round.

The problem, of course, is that we send 2m things in the last step. We can embed this structure in a
richer algebraic space by arithmetizing our boolean formula. Given a boolean formula ψ, we can call its
arithmetization Ψ. If the formula has one variable, its arithmetization is the single variable. If the formula
is the AND of two formulas, the arithmetization is the product, NOT s become (1 − Ψ), and ORs become
1− (1−Ψ1)(1−Ψ2). We can see that {0, 1} assignments ~a of ψ agree with Ψ(~a). Once we arithmetize our
formula φ → Φ. Φ is a function of the same variables, but we can plug in integer/rational/real/complex
values instead of binary.

Let F1(z) for some variable z is the number of satisfying assignments for Φ when the first variable is set
to z and the rest are boolean variables. We know F1(0) = f1(0) and F1(1) = f1(1). F1(z) is a univariate
polynomial in z of degree at most n. The prover sends f0() then F1(z). The verifier then asks the prover to
prove that for some point r that F1(z) = F1(r)

Lecture 21: Interactive Proof, Continued

CIS 511: Theory of Computation Spring 2017

Lecture 21: Interactive Proof, Continued
Professor Sampath Kannan Zach Schutzman

Interactive Proof (continued)

We were in the middle of proving that there is an interactive proof for #SAT . Proof: Recall φ was our
original formula over x1, . . . , xm and its arithmetization Φ, where φ(~x) = Φ(~x) if ~x is a binary vector/boolean
assignment. We didn’t say this last time, but the polynomial verifier can do this arithmetization.

The prover wants to convince the verifier that φ has k satisfying assignments. Equivalently,
m∑
i=1

∑
vi∈{0,1}

φ(x1, . . . , xk) =

k. If we replace φ with Φ, we should have the same thing, and the verifier can do just that.

Let’s decompose the sum. We have
∑

v2∈{0,1}

∑
v3∈{0,1}

· · ·
∑

vm∈{0,1}
Φ(z, x2, x3, . . . , xm) = F1(z). There are 2m−1

possible assignments for the remaining m− 1 variables. We therefore have a polynomial over our finite field
F in z of degree no more than the number of times x1 occurs, which is no more than the length of the input,
n.

The prover sends F1(z) to the verifier. F1(0) + F1(1) should equal k. The verifier can plug these in for z
and check that the sum is equal to k. If not, the verifier rejects. The verifier then picks an element r1 ∈ F
at random, and asks the prover to prove that F1(r1) has the value it is supposed to have.

The prover then looks at F2(r1, z), which is the summation over x3 . . . xm ∈ {0, 1} of Φ(r1, z, x3 . . .). The
prover sends the coefficients of F2(r1, z) to the verifier. The verifier checks that F2(r1, 0)+F2(r1, 1) = F1(r1).
Then, it picks a random r2 ∈ F , and asks the prover to prove that F2(r1, r2) has the value it should. This
procedure repeats until we get to Fm.

We now need to verify correctness. Suppose the prover is honest and #φ = k, then the prover will convince
the verifier of this fact. Suppose the prover may be dishonest. We will show that with high probability,
the verifier will catch a lie. If the prover P̃ claims #φk̃ 6= k, let F̃1(z) be the polynomial that P̃ sends
the verifier in the first round. The correct polynomial is F1(z). Could F̃1(z) = F1(z)? No! Because then
F̃1(0) + F̃1(1) = F1(0) + F1(1) = k. F̃1(z) must be different, otherwise P̃ would be caught immediately.

Then, F̃1(z) − F1(z) 6≡ 0. This difference polynomial has degree less than or equal to n. The verifier picks
r1 at random. Then, at most n values for r1 will be a root of F̃1(z)−F1(z). Therefore, the probability that
r1 is a root is at most n

|F| . If r1 is not a root of this difference, then F̃1(r1) 6= F1(r1), and the prover is still

trying to prove something false. At any round, the prover is only off the hook if the verifier happens to pick
a root of this difference for ri.

At the end, P̃ claims F̃m(r1, r2, . . . , rm) = k̃, but this is equal to Φ(r1, r2, . . . , rm), which the verifier can
check itself, catching a lie. What is the probability that a lying prover does not get caught? The probability
that a prover escapes detection is no more than n

|F| . Therefore, the probability that the verifier catches a

dishonest prover is 1− n
|F| .

As long as we pick a field of size at least 3n2, we have a valid interactive proof.

21-1

21-2

To complete the proof that IP = PSPACE, we need to show PSPACE ⊆ IP by taking a PSPACE-
Complete language and showing it has an interactive proof. We can do this for TQBF. The structure of
the proof will take a formula ψ = q1x1q2x2 . . . qmxmφ(x1, x2 . . . xm) and perform arithmetization to strip
variables off and reduce the problem. For the quantifiers, we can replace the FOR ALLs by ANDing two
formulas and the EXISTS by ORing two formulas. The degrees of this polynomial will grow quickly by
this process, so it may take exponential space to write the polynomial down. Therefore, the verifier can’t
compute the arithmetization. We fix this by replacing high degrees of variables with lower degrees, because
they will still agree on x = 0, 1. This is subtle and a little tricky, but doable.

Zero Knowledge Proofs

Interactive proof is important in cryptography. We are interested in cases where Alice uses a ‘secret’ to
perform a task to convince Bob that the she knows the secret without revealing it to Bob.

We want to show that zero-knowledge proofs are sound (a dishonest prover gets caught), complete (if both
parties are honest, the prover can convince the verifier), and zero-knowledge (an honest verifier doesn’t reveal
the secret).

Let’s suppose we have a graph G = (V,E). The prover wants to convince V in zero knowledge that G is
3-colorable, which it knows. If we didn’t have the zero-knowledge requirement, we could just treat this as
an NP language and be done in one step.

Here’s the interactive proof. At each round, the prover creates a random graph H isomorphic to G and
permutes the colors. The prover correctly 3-colors H and hides the colors and the edges. The prover could
be lying in a couple of ways: H could not be isomorphic to G or the coloring it picked is not a valid 3-coloring.
The verifier knows the original graph G and the three colors that should be used.

The verifier is allowed to make one of two challenges at each round. It can ask the prover to prove that
the presented graph is isomorphic to G. This can be done by revealing the edges and giving a short proof
of isomorphism. The second challenge is that the verifier can pick any two vertices and ask the prover to
show that they are properly colored. This can be done by revealing at most the edge between them and
the respective coloring. If the prover succeeds in showing something valid, then we move to the next round.
Otherwise, the verifier catches a lie and rejects.

What is the probability the cheating prover gets caught? If the graph is not isomorphic, then the prover
gets caught with probability 1

2 . If the prover is lying about the colorabilty of the graph, then there is some
pair of vertices colored illegally. The verifier will catch this with probability O(1

n2). Therefore, in n3 rounds,
the probability of failing to catch a lying prover is O(e−n).

Where does zero-knowledge come in? An IP is zero-knowledge if the transcript could have been generated
without the verifier actually looking at the graph. Since challenges and vertex pairs are chosen at random,
it could commit, a priori, to a (secret) order of challenges, so the verifier doesn’t really learn anything from
the prover. Since the verifier can simulate the protocol, it is zero-knowledge.

Lecture 22: Cryptography

CIS 511: Theory of Computation Spring 2017

Lecture 22: Cryptography
Professor Sampath Kannan Zach Schutzman

Cryptography Basics

Historically, cryptography has been about sending encrypted messages, such that only the intended recipient
can decipher the contents.

In general, we have some plaintext m and ciphertext c and a function f(m) = c. The message cannot be
sent as m, so instead the first party, Alice, computes f(m) and sends the second party, Bob, c. Bob should
be the only one who can compute f−1(c) = m.

Easy examples include rotation ciphers (shift letters forward/backwards some number of places) and total
replacement. These are both really easy to decode, so in modern settings, they are not practical. We also
don’t think that you can get better security by making the function more complex (i.e. composing a bunch
of bad methods in a convoluted way). We want methods that are provably difficult for an eavesdropper,
Eve, to invert.

The one-time pad (private-key encrpytion) is a secure scheme. Suppose we have a key k with |k| = |m|.
Alice takes m and k and send c = m ⊕ k, where ⊕ is the bitwise exclusive-or operation. Bob knows k and
computes m = c⊕ k (exclusive-or is self-inverse). If k is drawn uniformly from all strings of that length, the
cyphertext is random with respect to the plaintext. This is a symmetric key encoding scheme, because
Alice and Bob both have the same information, and we use a key to perform the encryption/decryption.
This whole scheme relies on keeping k secret.

One drawback is that each pair of parties needs a separate key, agreed upon beforehand. If there are n users,
we need O(n2) keys of length O(2m). This is a lot. Can we do better?

Public-key cryptography fixes some of these drawbacks.

Cryptography and Complexity

For cryptography to work, we need functions that are easy to compute but hard to compute.

Definition 22.114 A function f : {0, 1}∗ → {0, 1}∗ is length-preserving if |f(w) = |w| for all w ∈ {0, 1}∗.

Definition 22.115 A function f is a permutation if it is bijective on {0, 1}n for all n (bijective and
length-preserving).

A probabilistic Turing machine M on input x, we can talk about the probability that M outputs y. By
definition,

∑
y

(M outputs y) ≤ 1.

Definition 22.116 A length-preserving function f is a one-way function if there is a poly-time deter-
ministic Turing machine M that on input w outputs f(w) and for n large enough, if w is chosen uniformly

22-1

22-2

at random from {0, 1}n, and k is any constant, and D is any probabilistic poly-time Turing machine, the
probability that D on input f(w) computes y, such that f(y) = f(w) is less than or equal to 1

nk .

Basically, the function is easily computed but a decoder can find an inverse with extremely low probability.

One-way functions are good for passwords. The user computes the encryption of the password and sends
that ciphertext to the system. At login, the system only needs to check that the ciphertexts match, and you
never reveal the plaintext of the password.

Definition 22.117 A trapdoor function is a one-way function which is easy to invert given that you know
a certain ‘secret’.

Example: let N = pq, where p, q are n-bit primes. Then, the set Z∗N is the set of all numbers less that
N and relatively prime to N . (E.g. Z∗10 = {1, 3, 7, 9}, Z∗7 = {1, 2, 3, 4, 5, 6}). We have a function f which
maps x ∈ Z∗N to x2 ∈ Z∗N . f is a trapdoor function. This is believed to be one-way because if we could do
it quickly, we could factor integers.

Proof: We want to show that being able to compute the discrete square root in Z∗n efficiently gives us a
fast algorithm for factoring. Suppose we have a black box that computes discrete square roots. If we take a
random r and compute a = r2 and feed a to the black box to get a result b. Then, check if r+b or r−b share
a factor with N (via the Euclidean algorithm). If so, we have found one of the factors of N and therefore
can get the other.

We claim this succeeds with probability 1
2 and is therefore a probabilistic polynomial algorithm. When we

pick r, it has some residue mod p and mod q. Since r2 = a, we have the squares of the same residues. The
black box returns a square root b. Half of the time, we get back the same residues (plus or minus), and half
the time we do not. If we got back the same ones, we failed as we gained no new information. The other half
of the time, we get back some multiple of either p or q, and then can compute the greatest common divisor
with N .

We can do encryption with this by doing the following: Bob picks primes p, q and publishes N = pq, but not
p or q. When Alice wants to send a message m, she computes c = m2 mod N and sends c to Bob. Since
Bob can factor N , he can easily invert the computation and recover one of the four square roots of m2. If
Alice makes sure her message is shorter than N

2 , then we reduce to only two possible roots, and the Jacobi
symbol can further reduce it to one. Bob can then read m.

This is a form of public-key cryptography called the Rabin cryptosystem, and is algorithmically equivalent
to factoring. The drawback is the four-to-one mapping, and we don’t like this potential for collision.

Lecture 23: More Cryptography and Random Number Generation

CIS 511: Theory of Computation Spring 2017

Lecture 23: More Cryptography and Random Number Generation
Professor Sampath Kannan Zach Schutzman

Cryptography Wrap-Up

The existence of trapdoor functions is a stronger claim than the existence of one-way functions.

To make a trapdoor function, we need a generator G(x) which is a probabilistic function which takes as input
the length of the string and produces an index i into a family of functions and t, the trapdoor information
(‘secret’). Sometimes i is called the public key and t the private key.

For the forward direction, we have a function c = f(m, i), where m is the message in plaintext, i is as above,
and c is the ciphertext. We have f easy to compute in poly-time (by definition). We also want that for
all i and any probabilistic poly-time algorithm E, Pr(f(E(f(w, i), i)) = f(w, i)) is negligible. That is, the
probability that a hacker can find any of the preimages of c under f is arbitrarily small.

For the reverse direction, we say there exists a poly-time algorithm h such that h(f(w, i), t) = w. That is,
knowing t allows easy decryption.

If trapdoor functions exist, then secure public-key encryption is possible.

One function believed to be a trapdoor function generates two n-bit primes, p, q (we expect n trials to generate
each). We set the public key to be i = pq and t = (p, q). Our f(m, i) = m2 mod i and h(m2, (p, q)) finds
the square root of m2 mod p and q. We showed last time that that finding square roots modulo composite
numbers is hard, and it turns out that finding square roots modulo prime numbers is easy. Knowing m2

mod p and m2 mod q gives easy access to m2 mod pq, but if we don’t know either of these, we do not have
easy access to this quantity. Therefore, if factoring integers is hard, this f is a trapdoor function.

The RSA Cryptosystem(Rivest, Shamir, Adleman) is a more popular cryptosystem. Bob, the recipient
of the message, picks two primes p, q and computes N = pq. He then chooses an encryption exponent
e ∈ [0, N−1] and computes a decryption exponent d such that for any message m ∈ Z∗N , (me)d = m (mod N).
Bob publishes (N, e). There are p+ q− 1 values in [0, N − 1] not relatively prime to N , so a random number
has probability p+q+1

pq of not being in Z∗N , which is very small. When Alice wants to send a message to Bob,
she computes me mod N which Bob can decrypt.

How do we choose e? We use the Euler totient function φ(N) = (p − 1)(q − 1) = |Z∗N |. φ(p) = p − 1 for
prime p. If p and q are relatively prime, then φ(pq) = φ(p)φ(q), by the Chinese Remainder Theorem. From
group theory (by Lagrange’s Theorem), for any a ∈ Z∗N , aφ(N)mod N = 1.

If Bob can pick e, d such that ed = 1 mod φ(N), then med = mkφ(N)+1 = m. Therefore, e should be
relatively prime to φ(N). To pick d, Bob finds d which satisfies de+ kφ(N) = 1.

Bob can do all of his computations and decryption in polynomial time, and Alice can do the encryption in
polynomial time as well. If we assume factoring is hard, then an eavesdropper without access to p and q
cannot decrypt the message.

RSA doesn’t work if the messages are too short (drawn from a small space). An eavesdropper can brute-force
it and/or we run into trouble with the exponent not causing the values to wrap around N .

23-1

23-2

Suppose our eavesdropper Eve sees the ciphertext and knows that the message being transmitted is one of
m1 or m2, which she has access to in plaintext.

Definition 23.118 A public-key encryption scheme is called semantically secure if Eve has only a neg-
ligible advantage over random guessing at determining whether the true message is m1 or m2.

Semantic security is obviously impossible for any deterministic encryption scheme. One randomized scheme
is to add random padding to the message before encrypting it. It is conjectured that RSA with random
padding is semantically secure.

Pseudorandom Number Generation

Definition 23.119 A pseudorandom number generator (PRNG) is a deterministic function which
takes as input a string of a short length (m) and produces a string of a much larger length (n) such that the
output string looks random. That is, the distribution of the output strings is indistinguishable from a draw
from a uniform distribution over strings of length n.

In actuality, the PRNG can’t truly mimic the uniform distribution. There are 2n possible uniform strings,
but the PRNG has output space of size 2m.

Definition 23.120 A PRNG is pseudorandom if for any probabilistic poly-time algorithm A which outputs
0 or 1, the probability that A outputs 1 given input from the PRNG minus the probability that A outputs
1 given input drawn from the uniform distribution is negligible. That is, there is no such A which can
meaningfully differentiate between draws from the PRNG and a true uniform distribution.

Claim 23.121 If one-way functions exist, then PRNGs exist.

PRNG from Rabin: Start with a seed x ∈ {0, 1}m mod N . Take x2 mod N and output the most significant
bit, then repeat. The proof that this works is difficult.

Definition 23.122 A generator is next-bit unpredictable if no algorithm can do negligibly better than
random guessing for the ith bit of a string given the first i− 1.

Claim 23.123 A generator is a PRNG is it is next-bit unpredictable.

Lecture 24: Circuit Complexity

CIS 511: Theory of Computation Spring 2017

Lecture 24: Circuit Complexity
Professor Sampath Kannan Zach Schutzman

Parallel Computation

Definition 24.124 The Parallel Random Access Model (PRAM) is a model with synchronous processes
with shared memory. Each process can read one cell, perform a computation, and write one cell at each step,
synchronously.

Definition 24.125 The Circuit Model is a model where each gate is considered to be a processor.

Definition 24.126 A bounded fan-in (fan-out) model is one in which we limit the fan-in (fan-out) of
any gate to be at most some constant.

We can convert unbounded fan-in AND and OR gates into bounded ones by replacing it with a tree of
sufficient depth.

Claim 24.127 Circuits where all gates have fan-out 1 can be thought of as equivalent to formulas.

We can see this by observing that fan-out of 1 makes the circuit a tree. We can then recursively build the
formula by considering left and right subtrees separately.

The formula for a circuit with fan-out greater than 1 is exponentially big.

When considering computation of circuits, there are two parameters we are interested in: the size (number
of gates), and the depth (length of the longest path from input to output).

Circuits have a fixed number of inputs. How can they recognize arbitrary languages?

Definition 24.128 A (non-uniform) circuit family C is a collection of circuits C1, C2 . . . where we use
circuit Ci to compute things on inputs of length i.

Defined this way, we can define a C which computes the Halting Problem. This is not ideal.

Definition 24.129 A uniform circuit family is a collection of circuits C such that there exists a Turing
machine M which runs in log-space which on input 1n, outputs the circuit Cn.

Now that we stipulate that it is computable by a log-space transducer, we no longer are able to generate a
family of circuits to solve the Halting Problem.

We’ll look at simultaneous size-depth bounds (as a function of n) on uniform circuit families. We want
size(n) to be at most polynomial and depth(n) to be polylogarithmic (logk(n)).

24-1

24-2

Definition 24.130 The class NCi, for i ∈ N is the set of languages recognized by uniform circuit families
of size polynomial in n and depth logi(n).

Example: The problem of boolean matrix multiplication is like regular matrix multiplication but the entries
are boolean values, we replace elementwise multiplication by AND and addition by OR. This can be done
in NC1, as we can design a circuit with O(n3) gates and log(n) depth to compute this.

This problem (using adjacency matrices) can tell us whether two vertices in a graph are connected by a path
of length 2.

Example: The transitive closure of a directed graph, TC(G) is a graph G′ such that there is an edge from
i to j in G′ if and only if there is a path from i to j in G. This captures all of the reachability information
of G. We can compute this by taking A to be the adjacency matrix of G and computing (I +A)n, where n
is the number of vertices in G. We need size n and depth 1 to do the addition, then log(n) multiplications
of size n3 and depth log(n). In total, we have depth log2(n) and size n3log(n). Therefore, transitive closure
is in NC2.

Claim 24.131 NC1 ⊆ L ⊆ NL ⊆ NC2.

Proof: L ⊆ NL is trivial, we’ve just proven that NL ⊆ NC2 because TC allows us to compute PATH, so
PATH ∈ NC2. We also know NC1 ⊆ NC2. We just need to show that NC1 ⊆ L.

An NC1 circuit is a polynomial circuit with depth log(n) and polynomial size which is computed by a
log-space transducer.

Let A be a language in NC1. We will give an algorithm M in L to compute A. On input w first counts
the length of w equal to n. It then uses the transducer which generates the circuit family to construct the
nth circuit Cn, then recursively evaluates the circuit on input w, starting with the output. Since the circuit
is log-depth, the recursion can be computed by a machine which only remembers one bit at each level to
remember the path and one bit for the previous result, if it exists for a total of 2log(n) bits. Hence NC1 ⊆ L.

We also have NC ⊆ P .

Lecture 25: Practical Approaches to NP

CIS 511: Theory of Computation Spring 2017

Lecture 25: Practical Approaches to NP
Professor Sampath Kannan Zach Schutzman

Optimization Problems

Optimization problems usually minimize or maximize things. We would like ways to solve NP -Complete
optimization problems, like minimum Vertex Cover, maximum clique, etc.

Definition 25.132 An algorithm A achieves an approximation ratio of C if for all inputs x, A(x)
OPT (x) ≤ C,

where A(x) is A’s result and OPT (x) is the optimal result.

Vertex Cover

Let’s think about Vertex Cover. Given a graph G, we want to find the smallest set of vertices such that
every edge of G is incident to a vertex in the cover.

Definition 25.133 A maximal matching is a set of edges in a graph which form a matching such that
no other edge can be added and have it still remain a matching.

A maximal matching can be found efficiently by a greedy algorithm. Let M be a maximal matching and
V (M) be the set of vertices in the matching. We have |V (M)| = 2|M |, so OPT (G) ≥ |M |. We claim V (M)
is a Vertex Cover. To see this, suppose that it is not. Then some edge (u, v) is not covered by V (M). But
then we could add (u, v) to M , contradicting the assumption that M is a maximal matching.

Therefore, a maximal matching is a 2-approximation for finding a Vertex Cover.

Note that reductions do not necessarily preserve approximation factors. Think of Vertex Cover and In-
dependent Set. Simply taking the complement of a 2-approximate Vertex Cover could result in a size zero
Independent Set if every vertex was added to the cover. In fact, Independent Set is strongly non-approximable
(as is clique), and finding a good approximation algorithm would prove P = NP

Set Cover

Now, let’s think of Set Cover. Here, we are given a universe S of n elements and a collection of m subsets
S1, S2, . . . , Sm. We want to find a minimum number of subsets such that their union is equal to S. Vertex
cover is a special case of Set Cover, where the universe is the set of edges and the subsets are the sets of
edges incident to each vertex.

A greedy algorithm to approximate Set Cover is to iteratively pick the Si with the largest number of
uncovered elements until we cover everything. Suppose the greedy algorithm selects k subsets Si1 , Si2 . We
know that Si1 covers at least n

k elements, as either it or a strictly smaller subset must be included in the
optimal solution, as our greedy algorithm picks the largest subset at the first step. Consider Si2 . For the

25-1

25-2

same reason, we have that Si2 covers at least
n(1− 1

k)

k elements, and so on. We can upper-bound the number
of uncovered elements after t rounds by n(1 − 1

k)t. We want to find the t such that this becomes smaller
than 1. By taking some logarithms and doing algebra, we get l ≈ k
ln(n) as the number of sets the greedy algorithm will choose. This is therefore a ln(n)-approximation to Set
Cover. We can also prove that this is tight. If Set Cover has a (ln(n) − ε)-approximation algorithm, then
P = NP .

Subset-Sum

The optimization version of the Subset-Sum problem, which asks to find a subset of a universe a1, a2, . . . , an
whose sum is maximum subject to it being less than or equal to a target T . To solve this exactly, we can
just check all 2n subsets, and pick the one that sums to the largest value less than or equal to T . We can do
this in exponential time with a dynamic programming approach by keeping an array L such that Li is the
list of sums we can get with a subset of the first i elements, and we construct Li+1 = Li ⊕ {0, ai+1}. This
runs in time nT , but running time of T is not polynomial.

We can find an arbitrarily good approximation to this problem. That is, for any ε > 0, we have OPT (I)
A(I) = 1+ε.

Our approximation is similar to the dynamic programming. At each step, we eliminate from L any value
that is above T or within a factor of (1 + δ) of some other value. That is, for each element z, eliminate all
remaining elements between z and 1 + δ. This trimming process means that we have elements that are no
closer together than z1, z1(1 + δ), z1(1 + δ)2, and so on, where z1 is the first element of the list.

Since z1 is at least 1, there are at most log1+δ(T) elements in any Li. This is approximately log(T)
δ , so we get

a relation that the length of the list increases as δ gets closer to zero. We also know that the length of Li+1

is twice that of Li, but since we are trimming at each step, the list never gets too big. log(T) is polynomial

in T , so the total running time is n log(T)
δ .

How good of an approximation is this? By pruning values, we get no further than (1 + δ)n, so if we set
δ = ε

n , we get an approximation factor which looks like (1 + ε
n)n, which is close to eε, and for small ε, this

is roughly 1 + ε.

Lecture 26: Relativization

CIS 511: Theory of Computation Spring 2017

Lecture 26: Relativization
Professor Sampath Kannan Zach Schutzman

Relativization

Relativization is the idea of asking which problems are easily solved when given a black box for some other
language A. We can visualize this as adding a query tape and query state to our Turing machine. The
machine writes some string w on the query tape and enters the query state. Then, in one step the black box
answers w ∈ A.

Definition 26.134 An oracle is the proper name for a black box to answer membership queries in one step.

Definition 26.135 An oracle Turing machine is a Turing machine with access to some oracle.

Example: If the oracle language is SAT , what can we decide in polynomial time with a SAT oracle? (This
is denoted PSAT)

Claim 26.136 NP ⊆ PSAT

Proof:

Our machine can do the polynomial reduction from any NP language L to SAT , then query the oracle.

Claim 26.137 Co-NP ⊆ PSAT

Proof:

The oracle is not bound by non-determinism. The oracle answering NO to a SAT query establishes mem-
bership in UNSAT . Since UNSAT is Co-NP -Complete, we have any Co-NP problem also in PSAT .

We don’t know anything further than this.

What about NPSAT ? We don’t actually know if PSAT = NPSAT . The problem MinFormula =
{φ | ∃φ′ φ = φ′, |φ| > |φ′|}, asking whether there exists a smaller equivalent formula for some boolean
formula φ, is in NPSAT . The algorithm to do this non-deterministically guesses a smaller formula equiv-
alent to φ. Showing two formulas are not equivalent is in NP , so equivalence is in Co-NP , which we can
handle with our SAT oracle. It is not known whether there exists a PSAT algorithm to decide this language,
but we don’t think there is.

Suppose we have two oracles A and B. A is an oracle such that PA = NPA and B is an oracle such that
PB (NPB , even if P = NP .

26-1

26-2

A will be an oracle for some PSPACE-Complete language, say TQBF . The class NPTQBF . A NPSPACE
machine can recognize any language in NPTQBF by replacing oracle queries with PSPACE computations,
so NPTQBF ⊆ NPSPACE ⊆ PSPACE. Additionally, containment goes the other way. Any PSPACE
language can be reduced to TQBF in polynomial time, and then the oracle queried for the answer. Hence
PTQBF = NPTQBF = PSPACE = NPSPACE.

Now, we’ll create an oracle B as the following:

Let LB = {1n | ∃x s.t.|x| = n, x ∈ B}. That is, LB contains all unary strings of length n such that
the oracle language also has a string of length n. LB ∈ NPB . On input 1k, a NP machine guesses a
string of length k and calls the oracle to check membership.

We also have LB /∈ PB . Enumerate all polynomial time machines with time bounds. Assume that the
ith machine runs in time ni. Consider machine Mi, and pick a length n large enough such that we
haven’t considered whether any strings of length n are in B and that ni < 2n. Simulate Mi on 1n. If
Mi ever asks about a string of length n, the oracle should say NO. Mi can only ask about ni strings.
If Mi says that B contains no strings of length n, we include one of that length. If Mi says that B
does contain a string of that length, we make B not have any strings of that length.

Suppose, for the sake of contradiction, that LB ∈ PB . Then there exists some machine Mi such that
LB such that LB = L(MB

i). However, we constructed LB such that this cannot happen.

Therefore, there are some oracles that separate P from NP .

To show C1 and C2 are equal, we typically used simulation arguments. A simulation argument to prove
C1 = C2 will also prove that CB1 = CB2 for any oracle B. We therefore know that we can not prove P = NP
by a simulation argument.

The most common argument for showing C1 (C2 is diagonalization. The same argument works for oracles,
showing that CA1 (CA2 for any oracle A. We have an oracle under which PA = NPA, therefore, we cannot
prove P 6= NP via diagonalization.

