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ABSTRACT
In political redistricting, the compactness of a district is used as a quantitative
proxy for its fairness. Several well-established, yet competing, notions of geographic
compactness are commonly used to evaluate the shapes of regions, including the
Polsby-Popper score, the convex hull score, and the Reock score, and these scores are
used to compare two or more districts or plans. In this paper, we prove mathemati-
cally that any map projection from the sphere to the plane reverses the ordering of
the scores of some pair of regions for all three of these scores. We evaluate these re-
sults empirically on United States congressional districts and demonstrate that this
order-reversal does occur in practice with respect to commonly-used projections.
Furthermore, the Reock score ordering in particular appears to be quite sensitive to
the choice of map projection.

1. Introduction

Striving for the geographic compactness of electoral districts is a traditional principle
of redistricting (Altman, 1998), and, to that end, many jurisdictions have included the
criterion of compactness in their legal code for drawing districts. Some of these include
Iowa’s measuring the perimeter of districts (Iowa Code §42.4(4)), Maine’s minimizing
travel time within a district (Maine Statute §1206-A), and Idaho’s avoiding drawing
districts which are ‘oddly shaped’ (Idaho Statute 72-1506(4)). Such measures can vary
widely in their precision, both mathematical and otherwise. Computing the perimeter
of districts is a very clear definition, minimizing travel time is less so, and what makes
a district oddly shaped or not seems rather challenging to consider from a rigorous
standpoint.

While a strict definition of when a district is or is not ‘compact’ is quite elusive,
the purpose of such a criterion is much easier to articulate. Simply put, a district
which is bizarrely shaped, such as one with small tendrils grabbing many distant
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chunks of territory, probably wasn’t drawn like that by accident. Such a shape need
not be drawn for nefarious purposes, but its unusual nature should trigger closer
scrutiny. Measures to compute the geographic compactness of districts are intended
to formalize this quality of ‘bizarreness’ mathematically. We briefly note here that the
term compactness is somewhat overloaded, and that we exclusively use the term to
refer to the shape of geographic regions and not to the topological definition of the
word.

People have formally studied geographic compactness for nearly two hundred years,
and, over that period, scientists and legal scholars have developed many formulas to
assign a numerical measure of ‘compactness’ to a region such as an electoral district
(Young, 1988). Three of the most commonly discussed formulations are the Polsby-
Popper score, which measures the normalized ratio of a district’s area to the square of
its perimeter, the convex hull score, which measures the ratio of the area of a district
to the smallest convex region containing it, and the Reock score, which measures the
ratio of the area of a district to the area of the smallest circular disc containing it.
Each of these measures is appealing at an intuitive level, since they assign to a dis-
trict a single scalar value between zero and one, which presents a simple method to
compare the relative compactness of two or more districts. Additionally, the mathe-
matics underpinning each is widely understandable by the relevant parties, including
lawmakers, judges, advocacy groups, and the general public.

However, none of these measures truly discerns which districts are ‘compact’ and
which are not. For each score, we can construct a mathematical counterexample for
which a human’s intuition and the score’s evaluation of a shape’s compactness differ.
A region which is roughly circular but has a jagged boundary may appear compact to
a human’s eye, but such a shape has a very poor Polsby-Popper score. Similarly, a very
long, thin rectangle appears non-compact to a person, but has a perfect convex hull
score. Additionally, these scores often do not agree. The long, thin rectangle has a very
poor Polsby-Popper score, and the ragged circle has an excellent convex hull score.
These issues are well-studied by political scientists and mathematicians alike (Barnes
and Solomon, 2020; Frolov, 1975; Maceachren, 1985; Polsby and Popper, 1991).

In this paper, we propose a further critique of these measures, namely sensitivity
under the choice of map projection. Each of the compactness scores named above is
defined as a tool to evaluate geometric shapes in the plane, but in reality we are
interested in analyzing shapes which sit on the surface of the planet Earth, which is
(roughly) spherical. When we analyze the geometric properties of a geographic region,
we work with a projection of the Earth onto a flat plane, such as a piece of paper or
the screen of a computer. Therefore, when a shape is assigned a compactness score, it
is implicitly done with respect to some choice of map projection. We prove that this
may have serious consequences for the comparison of districts by these scores. Because
there is no projection from the sphere to the plane which preserves ‘too many’ metric
properties and most compactness scores synthesize several of these properties, it is
unreasonable to expect any projection to preserve the numerical values of these scores
for all regions. However, since there are projections which preserve some geometric
properties, such as those which preserve the area of all regions or conformal projections
which preserve the angle of intersection of all line segments, we might ask a weaker
question and consider whether there is a projection which can preserve the induced
ordering of a compactness score over all regions.

In particular, we consider the Polsby-Popper, convex hull, and Reock scores on the
sphere, and demonstrate that for any choice of map projection, there are two regions,
A and B, such that A is more compact than B on the sphere but B is more compact
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than A when projected to the plane. We prove our results in a theoretical context
before evaluating the extent of this phenomenon empirically. We find that with real-
world examples of Congressional districts, the effect of the commonly-used Plate carée
projection, which treats latitude-longitude coordinates as Cartesian coordinate pairs,
on the convex hull and Polsby-Popper scores is relatively minor, but the impact on
Reock scores is quite dramatic, which may have serious implications for the use of this
measure as a tool to evaluate geographic compactness.

1.1. Organization

For each of the compactness scores we analyze, our proof that no map projection
can preserve their order follows a similar recipe. We first use the fact that any map
projection which preserves an ordering must preserve the maximizers in that ordering.
In other words, if there is some shape which a score says is “the most compact” on the
sphere but the projection sends this to a shape in the plane which is “not the most
compact”, then whatever shape does get sent to the most compact shape in the plane
leapfrogs the first shape in the induced ordering. For all three of the scores we study,
such a maximizer exists.

Using this observation, we can restrict our attention to those map projections which
preserve the maximizers in the induced ordering, then argue that any projection in
this restricted set must permute the order of scores of some pair of regions.

Preliminaries We first introduce some definitions and results which we will use to
prove our three main theorems. Since spherical geometry differs from the more familiar
planar geometry, we carefully describe a few properties of spherical lines and triangles
to build some intuition in this domain.

Convex Hull For the convex hull score, we first show that any projection which
preserves the maximizers of the convex hull score ordering must maintain certain
geometric properties of shapes and line segments between the sphere and the plane.
Using this, we demonstrate that no map projection from the sphere to the plane can
preserve these properties, and therefore no such convex hull score order preserving
projection exists.

Reock For the Reock score, we follow a similar tack, first showing that any order-
preserving map projection must also preserve some geometric properties and then
demonstrating that such a map projection cannot exist.

Polsby-Popper To demonstrate that there is no projection which maintains the score
ordering induced by the Polsby-Popper score, we leverage the difference between the
isoperimetric inequalities on the sphere and in the plane, in that the inequality for the
plane is scale invariant in that setting but not on the sphere, in order to find a pair of
regions in the sphere, one more compact than the other, such that the less compact
one is sent to a circle under the map projection.

Empirical Results We finally examine the impact of the Cartesian latitude-
longitude map projection on the convex hull, Reock, and Polsby-Popper scores and the
ordering of regions under these scores. While the impacts of the projection on the con-
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vex hull and Polsby-Popper scores and their orderings are not severe, the Reock score
and the Reock score ordering both change dramatically under the map projection.

2. Preliminaries

We begin by introducing some necessary observations, definitions, and terminology
which will be of use later.

2.1. Spherical Geometry

In this section, we present some basic results about spherical geometry with the goal of
proving Girard’s Theorem, which states that the area of a triangle on the unit sphere
is the sum of its interior angles minus π. Readers familiar with this result should feel
free to skip ahead.

We use R2 to denote the Euclidean plane with the usual way of measuring distances,

d(x, y) =
√

(x− y)2;

similarly, R3 denotes Euclidean 3-space. We use S2 to denote the unit 2-sphere, which
can be thought of as the set of points in R3 at Euclidean distance one from the origin.

In this paper, we only consider the sphere and the plane, and leave the consideration
of other surfaces, measures, and metrics to future work.

Definition 2.1. On the sphere, a great circle is the intersection of the sphere with
a plane passing through the origin. These are the circles on the sphere with radius
equal to that of the sphere. See Figure 1 for an illustration.

Definition 2.2. Lines in the plane and great circles on the sphere are called
geodesics. A geodesic segment is a line segment in the plane and an arc of a
great circle on the sphere.

The idea of geodesics generalizes the notion of ‘straight lines’ in the plane to other
settings. One critical difference is that in the plane, there is a unique line passing
through any two distinct points and a unique line segment joining them. On the sphere,
there will typically be a unique great circle and two geodesic segments through a pair
of points, with the exception of one case.

Definition 2.3. A triangle in the plane or the sphere is defined by three distinct
points and the shortest geodesics connecting each pair of points.

Observation 1. Given any two points p and q on the sphere which are not antipodal,
meaning that our points aren’t of the form p = (x, y, z) and q = (−x,−y,−z), there
is a unique great circle through p and q and therefore two geodesic segments joining
them.

If p and q are antipodal, then any great circle containing one must contain the other
as well, so there are infinitely many such great circles. For any two non-antipodal points
on the sphere, one of the geodesic segments will be shorter than the other. This shorter
geodesic segment is the shortest path between the points and its length is the metric
distance between p and q.
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Figure 1. A great circle on the sphere with its identifying plane.

Figure 2. Two great circles meet at antipodal points.

We now have enough terminology to show a very important fact about spherical
geometry. This observation is one of the salient features which distinguishes it from
the more familiar planar geometry.

Claim 2.4. Any pair of distinct great circles on the sphere intersect exactly twice,
and the points of intersection are antipodes.

Why is this weird? In the plane, it is always the case that any pair of distinct lines
intersects exactly once or never, in which case we call them parallel. Since distinct
great circles on the sphere intersect exactly twice, there is no such thing as ‘parallel
lines’ on the sphere, and we have to be careful about discussing ‘the’ intersection of
two great circles since they do not meet at a unique point. Furthermore, it is not the
case that there is a unique segment of a great circle connecting any two points; there
are two, but unless our two points are antipodes, one of the two segments will be
shorter.

Another difference between spherical and planar geometry appears when computing
the angles of triangles. In the planar setting, the sum of the interior angles of a triangle
is always π, regardless of its area. However, in the spherical case we can construct a
triangle with three right angles. The north pole and two points on the equator, one a
quarter of the way around the sphere from the other, form such a triangle. Its area is
one eighth of the whole sphere, or π

2 , which is, not coincidentally, equal to π
2 + π

2 + π
2−π.

Girard’s theorem, which we will prove below, connects the total angle to the area of a
spherical triangle.

In order to show Girard’s Theorem, we need some way to translate between angles
and area. To do that, we’ll use a shape which doesn’t even exist in the plane: the
diangle or lune. We know that two great circles intersect at two antipodal points, and
we can also see that they cut the surface of the sphere into four regions. Consider
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one of these regions. Its boundary is a pair of great circle segments which connect
antipodal points and meet at some angle θ ≤ π at both of these points.

Figure 3. A lune corresponding to an angle θ.

Using that the surface area of a unit sphere is 4π, computing the area of a lune with
angle θ is straightforward.

Claim 2.5. Consider a lune whose boundary segments meet at angle θ. Then the area
of this lune is 2θ.

Now that we have a tool that lets us relate angles and areas, we can prove Girard’s
Theorem.

Lemma 2.6. (Girard’s Theorem)
The sum of the interior angles of a spherical triangle is strictly greater than π. More

specifically, the sum of the interior angles is equal to π plus the area of the triangle.

Proof. Consider a triangle T on the sphere with angles θ1, θ2, and θ3. Let area(T )
denote the area of this triangle. If we extend the sides of the triangle to their entire
great circles, each pair intersects at the vertices of T as well as the three points
antipodal to the vertices of T , and at the same angles at antipodal points. This second
triangle is congruent to T , so its area is also area(T ). Each pair of great circles cuts
the sphere into four lunes, one which contains T , one which contains the antipodal
triangle, and two which do not contain either triangle. We are interested in the three
pairs of lunes which do contain the triangles. We will label these lunes by their angles,
so we have a lune L(θ1) and its antipodal lune L′(θ1), and we can similarly define
L(θ2), L′(θ2), L(θ3), and L′(θ3).

We have six lunes. In total, they cover the sphere, but share some overlap. If we
remove T from two of the three which contain it and the antipodal triangle from two
of the three which contain it, then we have six non-overlapping regions which cover
the sphere, so the area of the sphere must be equal to the sum of the areas of these
six regions.

By the earlier claim, we know that the areas of the lunes are twice their angles, so
we can write this as

4π = 2θ1 + 2θ1 + (2θ2 − area(T )) + (2θ2 − area(T ))

+ (2θ3 − area(T )) + (2θ3 − area(T ))
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and rearrange to get

θ1 + θ2 + θ3 = π + area(T ),

which is exactly the statement we wanted to show.

Figure 4. A spherical triangle and the antipodal triangle define six lunes.

We will need one more fact about spherical triangles before we conclude this section.
It follows immediately from the Spherical Law of Cosines.

Fact 1. An equilateral triangle is equiangular, and vice versa, where equilateral means
that the three sides have equal length and equiangular means that the three angles all
have the same measure.

An astute reader may notice that this result is also true of planar triangles, and the
planar version follows from Propositions I.6 and I.8 in Euclid’s Elements (Byrne, 1847;
Crowell, 2016). Since Euclid’s proof doesn’t rely on the existence of parallel lines, this
fact can alternatively be shown using his argument.

2.2. Some Definitions

Now that we have the necessary tools of spherical geometry, we will wrap up this
section with a battery of definitions. We carefully lay these out so as to align with an
intuitive understanding of the concepts and to appease the astute reader who may be
concerned with edge cases, geometric weirdness, and nonmeasurability. Throughout,
we implicitly consider all figures on the sphere to be strictly contained in a hemisphere.

Definition 2.7. A region is a non-empty, open subset Ω of S2 or R2 such that Ω is
bounded and its boundary is piecewise smooth.

We choose this definition to ensure that the area and perimeter of the region are well-
defined concepts. This eliminates pathological examples of open sets whose boundaries
have non-zero area or edge cases like considering the whole plane a ‘region’.

Definition 2.8. A compactness score function C is a function from the set of all
regions to the non-negative real numbers or infinity. We can compare the scores of
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any two regions, and we adopt the convention that more compact regions have higher
scores. That is, region A is at least as compact as region B if and only if C(A) ≥ C(B).

The final major definition we need is that of a map projection. In reality, the regions
we are interested in comparing sit on the surface of the Earth (i.e. a sphere), but these
regions are often examined after being projected onto a flat sheet of paper or computer
screen, and so have been subject to such a projection.

Definition 2.9. A map projection ϕ is a diffeomorphism from a region on the
sphere to a region of the plane.

We choose this definition, and particularly the term diffeomorphism, to ensure that
ϕ is smooth, its inverse ϕ−1 exists and is smooth, and both ϕ and ϕ−1 send regions
in their domain to regions in their codomain. Throughout, we use ϕ to denote such a
function from a region of the sphere to a region of the plane and ϕ−1, to denote the
inverse which is a function from a region of the plane back to a region of the sphere.

Since the image of a region under a map projection ϕ is also a region, we can
examine the compactness score of that region both before and after applying ϕ, and
this is the heart of the problem we address in this paper. We demonstrate, for several
examples of compactness scores C, that the order induced by C is different than the
order induced by C ◦ ϕ for any choice of map projection ϕ.

Definition 2.10. We say that a map projection ϕ preserves the compactness
score ordering of a score C if for any regions Ω,Ω′ in the domain of ϕ, C(Ω) ≥ C(Ω′)
if and only if C(ϕ(Ω)) ≥ C(ϕ(Ω′)) in the plane.

This is a weaker condition than simply preserving the raw compactness scores. If
there is some map projection which results in adding .1 to the score of each region,
the raw scores are certainly not preserved, but the ordering of regions by their scores
is. Additionally, ϕ preserves a compactness score ordering if and only if ϕ−1 does.

Definition 2.11. A cap on the sphere S2 is a region on the sphere which can be
described as all of the points on the sphere to one side of some plane in R3. A cap has
a height, which is the largest distance between this cutting plane and the cap, and a
radius, which is the radius of the circle formed by the intersection of the plane and
the sphere. See Figure 5 for an illustration.

h

r

Figure 5. The height h and radius r of a spherical cap.
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3. Convex Hull

We first consider the convex hull score. We briefly recall the definition of a convex set
and then define this score function.

Definition 3.1. A set in R2 or S2 is convex if every shortest geodesic segment be-
tween any two points in the set is entirely contained within that set.

Definition 3.2. Let conv(Ω) denote the convex hull of a region Ω in either the sphere
or the plane, which is the smallest convex region containing Ω. Then we define the
convex hull score of Ω as

CH(Ω) =
area(Ω)

area(conv(Ω)).

Since the intersection of convex sets is a convex set, there is a unique smallest (by
containment) convex hull for any region Ω.

Ω

CH(Ω)

Figure 6. A region Ω and its convex hull.

Suppose that our map projection ϕ does preserve the ordering of regions induced
by the convex hull score. We begin by observing that such a projection must preserve
certain geometric properties of regions within its domain.

Lemma 3.3. Let ϕ be a map projection from some region of the sphere to a region of
the plane. If ϕ preserves the convex hull compactness score ordering, then the following
must hold:

(1) ϕ and ϕ−1 send convex regions in their domains to convex regions in their
codomains.

(2) ϕ sends every segment of a great circle in its domain to a line segment in its
codomain. That is, it preserves geodesics.1

(3) There exists a region U in the domain of ϕ such that for any regions A,B ⊂ U ,
if A and B have equal area on the sphere, then ϕ(A) and ϕ(B) have equal area
in the plane. The same holds for ϕ−1 for all pairs of regions inside of ϕ(U).

Proof. The proof of (1) follows from the idea that any projection which preserves the
convex hull score ordering of regions must preserve the maximizers in that ordering.
Here, the maximizers are convex sets.

1Such a projection is sometimes called a geodesic map.
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A

B

U

X Y

Figure 7. Two equal area regions A and B removed from U to form the regions X and Y .

To show (2) we suppose, for the sake of contradiction, that there is some geodesic
segment s in U such that ϕ(s) is not a line segment. Construct two convex spherical
polygons L and M inside of U which both have s as a side.

ϕ(L)

ϕ(s)

ϕ(M)

Figure 8. If ϕ(s) is not a line segment, then one of ϕ(M) or ϕ(L) is not convex.

By (1), ϕ must send both of these polygons to convex regions in the plane, but this
is not the case. All of the points along ϕ(s) belong to both ϕ(L) and ϕ(M), but since
ϕ(s) is not a line segment, we can find two points along it which are joined by some
line segment which contains points which only belong to ϕ(L) or ϕ(M), which means
that at least one of these convex spherical polygons is sent to something non-convex
in the plane, which contradicts our assumption. See Figure 8 for an illustration.

That ϕ−1 sends line segments in the plane to great circle segments on the sphere is
shown analogously. This completes the proof of (2).

To show (3), let U be some convex region in the domain of ϕ. Take A,B to be
regions of equal area such that A and B are properly contained in the interior of U ,
as in Figure 7. Define two new regions X = UrA and Y = UrB, i.e. these regions
are equal to U with A or B deleted, respectively.

The cap U is itself the convex hull of both X and Y , and since A and B have equal
area, we have that CH(X) = CH(Y ). Since U is a cap, it is convex, so by (1), ϕ(U)
is also convex. Since ϕ preserves the ordering of convex hull scores and X and Y had
equal scores on the sphere, ϕ must send X and Y to regions in the plane which also
have the same convex hull score as each other. Furthermore, the convex hulls of ϕ(X)
and ϕ(Y ) are ϕ(U).
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By definition, we have

CH(X) = CH(Y )

and by the construction of X and Y , we have

area(ϕ(U))− area(ϕ(A))

area(ϕ(U))
=

area(ϕ(U))− area(ϕ(B))

area(ϕ(U))

area(ϕ(A)) = area(ϕ(B))

which is what we wanted to show. The proof that ϕ−1 also has this property is anal-
ogous.

We can now show that no map projection can preserve the convex hull score ordering
of regions by demonstrating that there is no projection from a patch on the sphere to
the plane which has all three of the properties described in Lemma 3.3.

Theorem 3.4. There does not exist a map projection with the three properties in
Lemma 3.3

Proof. Assume that such a map, ϕ, exists, and restrict it to U as above. Let T ⊂ U
be a small equilateral spherical triangle centered at the center of U . Let T1 and T2

be two congruent triangles meeting at a point and each sharing a face with T , as in
Figure 9.

T

T1

T2

Figure 9. The spherical regions T, T1, T2.

We first argue that the images of T ∪ T1 and T ∪ T2 are parallelograms.
Without loss of generality, consider T ∪T1. By construction, it is a convex spherical

quadrilateral. By symmetry, its geodesic diagonals on the sphere divide it into four
triangles of equal area. To see this, consider the geodesic segment which passes through
the vertex of T opposite the side shared with T1 which divides T into two smaller
triangles of equal area. Since T is equilateral, this segment meets the shared side at
a right angle at the midpoint, and the same is true for the area bisector of T1. Since
both of these bisectors meet the shared side at a right angle and at the same point,
together they form a single geodesic segment, the diagonal of the quadrilateral. Since
the diagonal cuts each of T and T1 in half, and T and T1 have the same area, the four
triangles formed in this construction have the same area.
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Since ϕ sends spherical geodesics to line segments in the plane, it must send T ∪T1

to a Euclidean quadrilateral Q whose diagonals are the images of the diagonals of the
spherical quadrilateral T ∪ T1.

Since ϕ sends equal area regions to equal area regions, it follows that the diagonals
of Q split it into four equal area triangles.

We now argue that this implies that Q is a Euclidean parallelogram by showing that
its diagonals bisect each other. Since the four triangles formed by the diagonals of Q
are all the same area, we can pick two of these triangles which share a side and consider
the larger triangle formed by their union. One side of this triangle is a diagonal d1 of
Q and its area is bisected by the other diagonal d2, which passes through d1 and its
opposite vertex. The area bisector from a vertex, called the median, passes through the
midpoint of the side d1, meaning that the diagonal d2 bisects the diagonal d1. Since
this holds for any choice of two adjacent triangles in Q, the diagonals must bisect each
other, so Q is a parallelogram.

ϕ(T1) m1

ϕ(T2) m2

ϕ(T )`

Figure 10. The image under ϕ of T, T1, T2 which form the quadrilateral in the plane.

Since T ∪ T1 and T ∪ T2 are both spherical quadrilaterals which overlap on the
spherical triangle T , the images of T ∪ T1 and T ∪ T2 are Euclidean parallelograms of
equal area which overlap on a shared triangle ϕ(T ). See Figure 10 for an illustration.

Because the segment ` is parallel to m1 and m2, m1 and m2 are parallel to each
other, and because they meet at the point shared by all three triangles, m1 and m2

together form a single segment parallel to `. Therefore, the image of the three triangles
forms a quadrilateral in the plane. Therefore, the image of T ∪T1∪T2 has a boundary
consisting of four line segments.

To find the contradiction, consider the point on the sphere shared by T , T1, and
T2. Since these triangles are all equilateral spherical triangles, the three angles at this
point are each strictly greater than π

3 radians, because the sum of interior angles on
a triangle is strictly greater than π. so, the total measure of the three angles at this
point is greater than π, Therefore, the two geodesic segments which are part of the
boundaries of T1 and T2 meet at this point at an angle of measure strictly greater than
π. Therefore, together they do not form a single geodesic. On the sphere, the region
T ∪ T1 ∪ T2 has a boundary consisting of five geodesic segments whereas its image
has a boundary consisting of four, which contradicts the assumption that ϕ and ϕ−1

preserve geodesics.

This implies that no map projection can preserve the ordering of regions by their
convex hull scores, which is what we aimed to show.
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4. Reock

Let circ(Ω) denote the smallest bounding circle (smallest bounding cap on the sphere)
of a region Ω. Then the Reock score of Ω is

Reock(Ω) =
area(Ω)

area(circ(Ω))
.

We again consider what properties a map projection ϕmust have in order to preserve
the ordering of regions by their Reock scores.

Lemma 4.1. If ϕ preserves the ordering of regions induced by their Reock scores, then
the following must hold:

(1) ϕ sends spherical caps in its domain to Euclidean circles in the plane, and ϕ−1

does the opposite.
(2) There exists a region U in the domain of ϕ such that for any regions A,B ⊂ U ,

if A and B have equal area on the sphere, then ϕ(A) and ϕ(B) have equal area
in the plane. The same holds for ϕ−1 for all pairs of regions inside of ϕ(U).

Proof. Similarly to the convex hull setting, the proof of (1) follows from the require-
ment that ϕ preserves the maximizers in the compactness score ordering. In the case
of the Reock score, the maximizers are caps in the sphere and circles in the plane.

To show (2), let κ be a cap in the domain of ϕ, and let A,B ⊂ κ be two regions
of equal area properly contained in the interior of κ. Then, define two new regions
X = κrA and Y = κrB, which can be thought of as κ with A and B deleted,
respectively.

Since κ is the smallest bounding cap of X and Y and since A and B have equal
areas, Reock(X) = Reock(Y ). Furthermore, by (1), ϕ must send κ to some circle in
the plane, which is the smallest bounding circle of ϕ(X) and ϕ(Y ). Since ϕ preserves
the ordering of Reock scores, it must be that ϕ(X) and ϕ(Y ) have identical Reock
scores in the plane.

By definition, we can write

Reock(X) = Reock(Y )

area(ϕ(X))

area(ϕ(κ))
=

area(ϕ(Y ))

area(ϕ(κ))

and by the construction of X and Y , we have

area(ϕ(κ))− area(ϕ(A))

area(ϕ(κ))
=

area(ϕ(κ))− area(ϕ(B))

area(ϕ(κ))

area(ϕ(A)) = area(ϕ(B)),

meaning that area(ϕ(A)) = area(ϕ(B)). Thus, for all pairs of regions of the same
area inside of κ, the images under ϕ of those regions will have the same area as well.

The same construction works in reverse, which demonstrates that ϕ−1 also sends
regions of equal area in some circle in the plane to regions of equal area in the sphere.
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We can now show that no such ϕ exists. Rather than constructing a figure on the
sphere and examining its image under ϕ, it will be more convenient to construct a
figure in the plane and reason about ϕ−1.

Theorem 4.2. There does not exist a map projection with the two properties in
Lemma 4.1.

Proof. Assume that such a ϕ does exist and restrict its domain to a cap κ as above.
This corresponds to a restriction of the domain of ϕ−1 to a circle in the plane. Inside
of this circle, draw seven smaller circles of equal area tangent to each other as in
Figure 11.

Figure 11. Seven circles arranged as in the construction for Theorem 4.2.

Under ϕ−1, they must be sent to an similar configuration of equal-area caps on the
sphere .

However, the radius of a of a spherical cap is determined by its area, so since the
areas of these caps are all the same, their radii must be as well. Thus, the midpoints of
these caps form six equilateral triangles on the sphere which meet at a point. However,
this is impossible, as the three angles of an equilateral triangle on the sphere must all
be greater than π

3 , but the total measure of all the angles at a point must be equal to
2π, which contradicts the assumption that such a ϕ exists.

This shows that no map projection exists which preserves the ordering of regions
by their Reock scores.

5. Polsby-Popper

The final compactness score we analyze is the Polsby-Popper score, which takes the
form of an isoperimetric quotient, meaning it measures how much area a region’s
perimeter encloses, relative to all other regions with the same perimeter.

Definition 5.1. The Polsby-Popper score of a region Ω is defined to be

PP(Ω) =
4π · area(Ω)

perim(Ω)2

in either the sphere or the plane, and area and perim are the area and perimeter of
Ω, respectively.

The ancient Greeks were first to observe that if Ω is a region in the plane, then
4π · area(Ω) ≤ perim(Ω)2, with equality if and only if Ω is a circle. This became
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known as the isoperimetric inequality in the plane. This means that, in the plane,
0 ≤ PP(Ω) ≤ 1, where the Polsby-Popper score is equal to 1 only in the case of a
circle. We can observe that the Polsby-Popper score is scale-invariant in the plane.

An isoperimetric inequality for the sphere exists, and we state it as the following
lemma. For a more detailed treatment of isoperimetry in general, see Osserman (1979),
and for a proof of this inequality for the sphere, see Rado (1935).

Lemma 5.2. If Ω is a region on the sphere with area A and perimeter P , then P 2 ≥
4πA−A2 with equality if and only if Ω is a spherical cap.

A consequence of this is that among all regions on the sphere with a fixed area A,
a spherical cap with area A has the shortest perimeter. However, the key difference
between the Polsby-Popper score in the plane and on the sphere is that on the sphere,
there is no scale invariance; two spherical caps of different sizes will have different
scores.

Lemma 5.3. Let S be the unit sphere, and let κ(h) be a cap of height h. Then
PP(κ(h)) is a monotonically increasing function of h.

Proof. Let r(h) be the radius of the circle bounding κ(h). We compute:

1 = r(h)2 + (1− h)2, by right triangle trigonometry

= r(h)2 + 1− 2h+ h2

Rearranging, we get that r(h)2 = 2h − h2, which we can plug in to the standard
formula for perimeter:

perimS(κ(h)) = 2πr(h) = 2π
√

2h− h2

We can now use the Archimedian equal-area projection defined by (x, y, z) →(
x√

x2+y2
, y√

x2+y2
, z
)

to compute areaS(κ(h)) = 2πh and plug it in to get:

PPS(κ(h)) =
4π(2πh)

4π2(2h− h2)
=

2

2− h

Which is a monotonically increasing function of h.

Corollary 5.4. On the sphere, Polsby-Popper scores of caps are monotonically in-
creasing with area,

Using this, we can show the main theorem of this section, that no map projection
from a region on the sphere to the plane can preserve the ordering of Polsby-Popper
scores for all regions.

Theorem 5.5. If ϕ : U → V is a map projection from the sphere to the plane, then
there exist two regions A,B ⊂ U such that the Polsby-Popper score of B is greater
than that of A in the sphere, but the Polsby-Popper score of ϕ(A) is greater than that
of ϕ(B) in the plane.
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ϕ

ϕ−1

B

ϕ(B)

Σ
A = ϕ−1(Σ)

Figure 12. The construction of regions A and B in the proof of Theorem 5.5.

Proof. Let ϕ be a map projection, and let κ ⊂ U be some cap. We will take our
regions A and B to lie in κ. Set B to be a cap contained in κ. Let Σ be a circle in the
plane such that Σ ( ϕ(B) and let A = ϕ−1(Σ). See Figure 12 for an illustration.

We now use the isoperimetric inequality for the sphere and Corollary 5.4 to claim
that A does not maximize the Polsby-Popper score in the sphere.

To see this, take Â to be a cap in the sphere with area equal to that of A. Note that
since the area of Â is less than the area of the cap B, it follows that we can choose
Â ⊂ B.

By the isoperimetric inequality of the sphere, PPS(Â) ≥ PPS(A). Since map
projections preserve containment, Σ ( ϕ(B) implies that A ( B, meaning that

area(Â) = area(A) � area(B). By Corollary 5.4, we know that PPS(Â) < PPS(B),
and combining this with the earlier inequality, we get

PPS(A) ≤ PPS(Â) < PPS(B)

Since Σ = ϕ(A) maximizes the Polsby-Popper score in the plane, but A does not
do so in the sphere, we have shown that ϕ does not preserve the maximal elements in
the score ordering, and therefore it cannot preserve the ordering itself.

The reason why every map projection fails to preserve the ordering of Polsby-Popper
scores is because the score itself is constructed from the planar notion of isoperimetry,
and there is no reason to expect this formula to move nicely back and forth between
the sphere and the plane. This proof crucially exploits a scale invariance present in
the plane but not the sphere. If we consider any circle in the plane, its Polsby-Popper
score is equal to one, but that is not true of every cap in the sphere.

6. Empirical Evaluation

In the previous sections we showed that no projection from the sphere to the plane
can preserve various compactness orderings. These theorems suggest that in general
maps that distort shape cannot preserve compactness orderings. In this section we
investigate empirically the consequences of calculating compactness in different map
projections, demonstrating the practical relevance of our investigation and providing
evidence for possible generalizations.
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6.1. Commonly-Used Projections

We briefly identify four commonly-used projections in the redistricting domain, which
we will use in the next section to compare the empirical effects of the choice of map
projection on the compactness orderings.

Plate Carrée The plate carrée projection, sometimes called an equirectangular pro-
jection interprets latitude-longitude coordinates on the Earth as planar x−y coordi-
nates. This map projection does not accurately reflect most geographic figures and is
therefore inappropriate for most applications. The U.S. Census Bureau distributes its
shapefiles in this format, trusting the user to reproject the data into a format suited
for the relevant application. However, because the data is distributed in this format,
redistricting analysts and stakeholders (e.g. Chen (2017); Chikina, Frieze, and Pegden
(2017); League of Women Voters of Pennsylvania, et al. (2018)) often do not perform
this reprojection step, and this has led to the plate carrée projection becoming a de
facto standard in this domain.

Mercator The Web Mercator projection is a cylindrical projection which is popular
in Web mapping applications. As a result, this is the projection used in several online
redistricting software tools available to the public, including DistrictBuilder (Public
Mapping Project, 2018), Dave’s Redistricting App (Bradlee, Crowley, Matheiu, and
Ramesey, 2019), and Districtr (Metric Geometry and Gerrymandering Group, 2019).

Lambert The Lambert conic projection is a conformal projection, which means that
it preserves the angles of intersection of all segments. This is colloquially interpreted
as ‘preserving shape at a small scale’. This projection is used in some portions of the
U.S. State Plate Coordinate System, and is therefore used in an official capacity for
some states.

Albers The Albers projection is an equal area conic projection, meaning it preserves
the areas of all figures. The U.S. Atlas projection for the conterminous 48 states is
an Albers projection and is the default in the Maptitude for Redistricting software,
which is widely used by redistricting professionals, including legislators, consultants,
and advocacy groups.

6.2. Results

While we have shown mathematically that the ordering of compactness scores is nec-
essarily permuted by any map projection, we now consider the possibility of this
effect occurring in reality. If it is the case that congressional districts all have scores
far enough apart that the distortion introduced by the choice of projection is not
sufficient to swap the ordering of this score, then the results above are merely mathe-
matical curiosities. Precisely stated, we ask whether reprojection affects compactness
score rankings of real districts in the context of commonly-used map projections. In
previous both the scientific literature and the legal landscape, this question was either
unaddressed, or asserted to be answered in the negative (c.f. Chen (2017); Chikina
et al. (2017); League of Women Voters of Pennsylvania, et al. (2018)).

In this section, we demonstrate that for the commonly-used map projections listed
above and the three compactness scores we examine in the previous sections, that this

17



permutation effect does occur in practice, using the congressional districts from the
115th Congress.2 We extract the boundaries of the districts from a U.S. Census Bureau
shapefile, using the highest resolution available, drawn at a scale of 1:500,000. We then
compute the convex hull, Reock, and Polsby-Popper scores with respect to common
map projections3 and examine the ordering of the districts with respect to both.
While this is slightly different from the mathematical framework where we compare
an abstract map projection to the computation on the surface of the sphere, computing
the spherical values of these scores is not a simple task, even in modern geographic
information systems (GIS) software.4 Rather, we can observe that the numerical values
of all three scores on all districts are very similar with respect to the Lambert and
Albers projections. These projections preserve local shape and area, respectively, and
so we can imagine the ground-truth spherical value to also be concordant with these
measures.

With four different map projections and three different compactness scores, we ex-
plore several instances in which the choice of map projection distorts the compactness
score ranking of districts.

We first consider the 36 congressional districts in Texas. In Section 6.2, we plot the
Polsby-Popper score ordering of these districts, comparing several pairs of projections.
A perfect preservation of the order would result in these points all falling on the di-
agonal. However, what we see in practice is that most points do lie on the diagonal
but several are not, indicating a disagreement between the ordering between the two
projections, although the score orders totally agree in the Mercator and Albers pro-
jections. The distortion is clearly present, although fairly mild, with the only swaps
occurring being between pairs nearby in the orderings.

We observe a similarly mild, though still present, perturbation in the convex hull
score orderings, shown in Figure 14. In this setting, however, the score ordering is
identical between the Lambert and Albers projections. A similar observation holds at
the national level, considering all 433 districts in the coterminous United States. Thus,
we empirically observe that the Polsby-Popper and convex hull score orders are fairly
robust to the choice of projection, although not entirely.

However, some compactness score orderings are more sensitive than others. In Fig-
ure 15, we examine the Reock score ordering for the same pairs of projections. While
the permutation between the Albers and the Lambert or Mercator projections is still
relatively mild, although more complex than for the Polsby-Popper score, the distor-
tion between Plate Carrée and these two projections is quite dramatic. The districts
at the extreme ends of the ordering are relatively undisturbed, but the districts in the
middle portion get shuffled around significantly. We observe that this effect is not a
result of some idiosyncracy of Texas’ districts, since a similar effect persists when we
consider all of the districts in the coterminous United States, shown in Figure 16.

The Polsby-Popper score is calculated by considering a portion of the map that
contains only the district itself. Since some of the projections we consider are locally
very similar, and the districts themselves are very small, this gives an explanation for

2Used for the 2016 congressional elections.
3The code to compute the various compactness scores is based on Lee Hachadoorian’s compactr project

(Hachadoorian, 2018).
4Provided that the region is contained in an open hemisphere, and that the earth is assumed to be a perfect

sphere sitting in R3, a simple algorithm to calculate a minimum bounding cap is as follows: find the minimum
bounding 3-ball of the region and intersect that ball with the Earth. Efficient algorithms exist for computing

the minimum bounding ball of a collection of points (Ritter, 1990). However, since computing the minimum
bounding sphere of a region is not a typical problem in GIS, the data necessary to run the algorithm is not

readily available.

18



0 10 20 30
0

10

20

30

Lambert

P
la

te
C

a
rr

ée

0 10 20 30
0

10

20

30

Mercator

P
la

te
C

a
rr

ée

0 10 20 30
0

10

20

30

Lambert

U
.S
.
A
lb
er
s

0 10 20 30
0

10

20

30

Mercator

U
.S
.
A
lb
er
s

Polsby-Popper Score Rank for Texas Districts

Figure 13. The Polsby-Popper score rank is slightly distorted between different projections.

the robustness of the compactness orderings for that score. On the other hand, the
more extreme reprojection order reversal we see in Reock scores results from the fact
that its computation depends on the potentially large smallest bounding circle around
the district. This circle will always be larger than the region relevant for the calculation
of the convex hull score, since the convex hull of a district is always contained in any
bounding circle, and all the map projections we consider distort larger shapes more
severely than smaller ones. Thus, we should expect the distortion from reprojections
to affect the Reock score more significantly than the convex hull score.

While the results outlined here are by no means comprehensive, they are a rep-
resentative sample of the prevalence of the order-reversal phenomenon in practice.
In all cases, extreme shapes remain extreme under reprojection, but the rankings of
the middle-ranked districts are distorted. While the actual numerical discrepancies
between the scores computed under the different projections is small, that this permu-
tation can even occur when using ‘nice’ projections like Albers and Lambert muddies
the water in discussing compactness. If value of using mathematics to describe the
shape of districts is to provide a small objective frame of reference in a setting where
subjective political factors play a large role, then the inconsistency even in the ordering
of the districts under the scores works counter to this purpose.

Furthermore, compactness scores are used directly and indirectly in the rapidly
growing area of statistical analysis of gerrymandering using ensembles of districting
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Figure 14. The convex hull score rank is slightly distorted between different projections, though not between

the Lambert and Albers projections.

plans (Chen and Rodden, 2015; Chikina et al., 2017; Herschlag, Kang, Luo, Graves,
Bangia, Ravier, and Mattingly, 2018; Liu, Cho, and Wang, 2015), where many pos-
sible maps are generated by a computer and used to contextualize properties of a
proposed plan. In that context, compactness scores are often aggregated into a score
for a districting plan, which is then used to constrain the universe of plans the algo-
rithm generates. For example, we might insist that the average Polsby-Popper score of
the generated plans not be larger than our plan of interest or assert a lower threshold
for the scores of the districts individually. One underexplored question is the extent to
which the dependence on the map projection affects the resulting statistical analysis
of these ensembles. We emphasize that it is possible that changes to the compactness
scores of the “middle of the pack” districting plans can affect the distribution from
which the algorithm draws samples; for instance, under the cut-off approach the uni-
verse of allowable plans itself could change significantly if the choice of map projection
shuffles which kinds of shapes have scores above and below the threshold. We refer
the reader to section 6.2.2 (“the extreme outlier hypothesis”) in (Najt, DeFord, and
Solomon, 2019) for more details on these questions.
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Figure 15. The Reock score ranking is distorted between several pairs of projections, with the Plate Carrée

projection providing the most dramatic differences.

7. Discussion

We have identified a major mathematical weakness in the commonly discussed com-
pactness scores in that no map projection can preserve the ordering over regions in-
duced by these scores. This leads to several important considerations in the mathe-
matical and popular examinations of the detection of gerrymandering.

From the mathematical perspective, rigorous definitions of compactness require
more nuance than the simple score functions which assign a single real-number value
to each district. Multiscale methods, such as those proposed by DeFord, Lavenant,
Schutzman, and Solomon (2019), assign a vector of numbers or a function to a region,
rather than a single number. The richer information contained in such constructions is
less susceptible to perturbations of map projections. Alternatively, we can look to cap-
turing the geometric information of a district without having to work with respect to a
particular spherical or planar representation. So-called discrete compactness methods,
such as those proposed in Duchin and Tenner (2018), extract a graph structure from
the geography and are therefore unaffected by the choice of map projection, and our
results suggest that this is an important advantage of these kinds of scores over tra-
ditional ones. Finally, recent work has used lab experiments to discern what qualities
of a region humans use to determine whether they believe a region is compact or not
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Figure 16. The Reock score ranking is distorted by reprojection from the Plate Carrée projection to the

Lambert projection when the entire US is considered.

(Kaufman, King, and Komisarchik, 2019). Incorporating more qualitative techniques
is important, especially in this setting where the social impacts of a particular dis-
tricting plan may be hard to quantify. To further complicate matters, as highlighted
by Barnes and Solomon (2020), the resolution of the shapefile influence the compu-
tation of compactness scores, particularly the Polsby-Popper score where the detail
of features like coastlines can have a massive impact on the measured perimeter of a
region. For this reason, repeating the experiment in Section 6.2 for different choices of
resolution results in quantitiatively different (although qualitatively similar) results.

We proved our non-preservation results for three particular compactness scores
which appear frequently in the context of electoral redistricting. There are countless
other scores offered in legal codes and academic writing, such as definitions analogous
to the Reock and convex hull scores which use different kinds of bounding regions,
scores which measure the ratio of the area of the largest inscribed shape of some kind
to the area of the district, and versions of these scores which replace the notion of ‘area’
with the population of that landmass. Many of these and others suffer from similar
flaws as the three scores we examined in this work. It would be interesting to consider
the most general version of this problem and enumerate a collection of properties such
that any map projection permutes the score ordering of a pair of regions under a score
with at least one of those properties.

While compactness scores are not used critically in a legal context, they appear fre-
quently in the popular discourse about redistricting issues and frame the perception
of the ‘fairness’ of a plan. An Internet search for a term like ‘most gerrymandered dis-
tricts’ will invariably return results naming-and-shaming the districts with the most
convoluted shapes rather than highlighting where more pleasant looking shapes re-
sulted in unfair electoral outcomes.

Similarly, a sizable amount of work towards remedying such abuses focuses pri-
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marily on the geometry rather than the politics of the problem. Popular press pieces
(e.g. Ingraham (2014)) and academic research alike (e.g. Cohen-Addad, Klein, and
Young (2017); Levin and Friedler (2019); Svec, Burden, and Dilley (2007)) describe
algorithmic approaches to redistricting which use geometric methods to generate dis-
tricts with appealing shapes. However, these approaches ignore all of the social and
political information which are critical to the analysis of whether a districting plan
treats some group of people unfairly in some way. A purely geometric approach to
drawing districts implicitly supposes that the mathematics used to evaluate the geo-
metric features of districts are unbiased and unmanipulable and therefore can provide
true insight into the fairness of electoral districts. We proved here that the use of
geographic compactness as a proxy for fairness is much less clear and rigid than some
might expect.

This work opens several promising avenues for further investigation. We prove strong
results for the most common compactness scores, but the question remains what the
most general mathematical results in this domain might be, such as giving a set of
necessary and sufficient conditions for a map projection to preserve the compactness
ordering with respect to a particular score, and which kinds of surfaces do and do not
admit such an order-preserving diffeomorphism or describing the permutation of scores
as a function of the change in curvature between the two spaces of interest. Our work
demonstrates a potential issue arising from the lack of standardization in the use of
map projections in redistricting applications, for instance in the statistical analysis of
gerrymandering, as discussed at the end of Section 6. Gaining a better understanding
of these effects is crucial as these statistical methods gain both academic and legal
traction. From a cartographic standpoint, understanding other redistricting-related
topics beyond compactness scores where the choice of map projection might have a
significant effect on the outcome is important, particularly as access to mapmaking
tools and data become more widely available to the general public.
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