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Abstract

We study an online linear classification problem, in which the data is generated
by strategic agents who manipulate their features in an effort to change the classi-
fication outcome. In rounds, the learner deploys a classifier, and an adversarially
chosen agent arrives, possibly manipulating her features to optimally respond to
the learner. The learner has no knowledge of the agents’ utility functions or “real”
features, which may vary widely across agents. Instead, the learner is only able to
observe their “revealed preferences” — i.e. the actual manipulated feature vectors
they provide. For a broad family of agent cost functions, we give a computationally
efficient learning algorithm that is able to obtain diminishing “Stackelberg regret”
— a form of policy regret that guarantees that the learner is obtaining loss nearly
as small as that of the best classifier in hindsight, even allowing for the fact that
agents will best-respond differently to the optimal classifier.

Introduction. Machine learning is typically studied under the assumption that the data distribution
a classifier is deployed on is the same as the data distribution it was trained on. However, the outputs
of many classification and regression problems are used to make decisions about human beings, such
as whether an individual will receive a loan, be hired, be admitted to college, or whether their email
will pass through a spam filter. In these settings, the individuals have a vested interest in the outcome,
and so the data generating process is better modeled as part of a strategic game in which individuals
edit their data to increase the likelihood of a certain outcome. Tax evaders may carefully craft their tax
returns to decrease the likelihood of an audit. Home buyers may strategically sign up for more credit
cards in an effort to increase their credit score. Email spammers may modify their emails in order to
evade existing filters. In each of these settings, the individuals have a natural objective that they want
to maximize — they want to increase their probability of being (say) positively classified. However,
they also experience a cost from performing these manipulations (tax evaders may have to pay some
tax to avoid an audit, and email spammers must balance their ability to evade spam filters with their
original goal in crafting email text). These costs can be naturally modeled as the distance between the
“true” features x of the individual and the manipulated features x′ that he ends up sending, according
to some measure. In settings of this sort, learning can be viewed as a game between a learner and
the set of individuals who generate the data, and the goal of the learner is to compute an equilibrium
strategy of the game (according to some notion of equilibrium) that maximizes her utility.

The relevant notion of equilibrium depends on the order of information revelation in the game.
Frequently, the learner will first deploy her classifier, and then the data generating players (agents)
will get to craft their data with knowledge of the learner’s classifier. In a setting like this, the learner
should seek to play a Stackelberg equilibrium of the game — i.e. she should deploy the classifier that
minimizes her error after the agents are given an opportunity to best respond to the learner’s classifier.
This is the approach taken by the most closely related prior work: Brückner and Scheffer (2011) and
Hardt et al. (2016). Both of these papers consider a one-shot game and study how to compute the
Stackelberg equilibria of this game. To do this, they necessarily assume that the learner has (almost)
full knowledge of the agents’ utility functions; in particular, it is assumed that the learner has access
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to the “true” distribution of agent features (before manipulation), and that the costs experienced by
the agents for manipulating their data are the same for all agents and known to the learner1.

This Work: Model. We depart from previous work in two ways. (1) The learner does not know
the utility functions of the agents: neither their true features x, nor the cost they experience for
manipulation (which can now differ for each agent): instead, all she can observe are their “revealed
preferences” – i.e. their strategic responses to her deployed classifier. (2) The agents arrive online,
and the learner’s goal is to minimize regret. We add one further twist. Previous work on strategic
classification has typically assumed that all agents are strategic. However, the equilibrium solutions
that result from this assumption may be undesirable. For example, in a spam classification setting,
the Stackelberg-optimal classifier may attain its optimal accuracy only if all agents — even legitimate
(non-spam) senders — actively seek to manipulate their emails to avoid the spam filter. In these
settings, it would be more desirable to compute a classifier that was optimal under the assumption
that spammers would attempt to manipulate their emails in order to game the classifier, but that did
not assume legitimate senders would. To capture this nuance, in our model, only agents whose true
label yt = −1 (e.g. spammers) are strategic, and agents for whom yt = 1 are non-strategic.

Formally, in each round t = 1, . . . , n, the learner proposes a classifier βt. Then, an agent arrives, with
some unknown “true” feature vector xt ∈ Rd, a label yt ∈ {±1}, and some unknown cost function
dt : Rd × Rd → R for manipulation. If yt = 1, we suppose the agent is nonstrategic and does not
manipulate; the algorithm observes (xt, yt) and suffers a loss `(βt, xt, yt). Otherwise, the agent best-
responds by selecting a manipulated set of features x̂t ∈ arg maxx̂ βt · x̂− dt(xt, x̂). The algorithm
only observes (x̂t, yt) and suffers a loss `(βt, x̂t, yt). In this sense, the algorithm must learn to
classify while observing only the “revealed preferences” of the strategic agents. We specifically focus
on logistic loss, `(β, x, y) = log

(
1 + e−yβ·x

)
, and hinge loss, `(β, x, y) = max {0, 1− yβ · x}.

We measure the performance of our algorithms via a quantity that we call Stackelberg regret:
informally, by comparing the average loss of the learner to the loss she could have experienced with
the best fixed classifier in hindsight, taking into account that the agents would have best-responded
differently had she used a different classifier. If the learner were in fact interacting with the same
agent repeatedly, or if the agents (xt, dt) were drawn from a fixed distribution, then the guarantee
of diminishing Stackelberg regret would imply the convergence to a Stackelberg equilibrium of
the corresponding one-shot game. However, Stackelberg regret is more general, and applies even
to settings in which the agents are adversarially chosen. Formally, given a sequence of play, the
Stackelberg regret of an algorithm is:

RS =

n∑
t=1

`(βt, x̂t(βt), yt)−min
β

n∑
t=1

`(β, x̂t(β), yt)

This notion of regret has also appeared in the context of online security games Balcan et al. (2015).

This Work: Results. We seek efficient algorithms for minimizing Stackelberg regret. The learner’s
problem is a bi-level optimization problem in which the objective of the inner layer (the agents’
maximization problem) is unknown. Even with full information, bi-level optimization problems are
often NP-hard. As a first step in our solution, we seek to identify conditions under which the learner’s
optimization problem is convex, allowing the learner to apply e.g. online gradient descent. For the
second step, we investigate efficient algorithms for minimizing these convex losses, in our limited
feedback model.

Convex learning problem. We study learners who deploy linear classifiers βt, and consider two
natural learner loss functions: logistic loss (corresponding to logistic regression) and hinge loss
(corresponding to support vector machines). Recall that strategic agents are assumed to choose
manipulations x̂t(βt) = arg maxx̂ βt · x̂ − dt(xt, x̂). Using tools from convex analysis, we give
general conditions on the cost functions dt that suffice to make the learner’s objective convex, for
both logistic and hinge loss, for all xt. These conditions are satisfied by (among other classes of cost

1The particulars of the models studied in Brückner and Scheffer (2011) and Hardt et al. (2016) differ. Brückner
and Scheffer model a single data generation player who manipulates the data distribution, and experiences
cost equal to the squared `2 distance of his manipulation. Hardt et al. study a model in which each agent can
independently manipulate his own data point, but assume that all agents experience cost as a function of the
same separable cost function, known to the learner.
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functions) any squared Mahalanobis distance and, more generally, by any norm-induced metric raised
to a power greater than one.
Theorem. For any abstract norm ‖ · ‖ on Rd and any r > 1, if dt(xt, x̂) = 1

r‖xt − x̂‖
r, then both

logistic loss and hinge loss `(βt, x̂t(βt), yt) are convex functions of the hypothesis βt, given that x̂t
is a best-response to βt when yt = −1 and x̂t = xt when yt = 1.

The proof relies on a series of tools from convex analysis, in particular relying on homogeneity of
norms to show that βt · x̂t(βt) is a convex function of βt when x̂t is a best-response.

Optimization with limited feedback. Once we have derived conditions under which the learner’s
optimization problem is convex, we can in principle achieve quickly diminishing Stackelberg regret
with any algorithm for online bandit (i.e. zeroth order) optimization that works for adversarialy
chosen loss functions. However, we observe that when some of the agents are non-strategic (e.g. the
non-spammers), there is additional structure that we can take advantage of. In particular, on rounds
for which the agent is non-strategic and the label is yt = 1, the learner can also derive gradients for
her loss function, in contrast to rounds on which the agent is strategic, where the learner only has
access to zeroth-order feedback. To take advantage of this, we analyze a variant of the bandit convex
optimization algorithm of Flaxman et al. (2005) which can make use of both kinds of feedback. The
regret bound we obtain interpolates between the bound of Flaxman et al. (2005), obtained when all
agents are strategic, and the regret bound of online gradient descent Zinkevich (2003), obtained when
no agents are strategic, as a function of the proportion of the observed agents which were strategic.
Theorem. For any sequence of agents A = (a1, . . . , an), our mixed-feedback learning algorithm
will output a sequence of classifiers B = (β1, . . . , βn) such that the expected Stackelberg regret
satisfies

E [RS(A,B)] 6
η

2
[nθ · d

2M2

δ2
+ n(1− θ)L2] +

1

2η
R2 + 3nLδ + nLRδ.

We use this theorem to optimally select the learning rate η and a “smoothing” parameter δ. This gives
regret bounds depending on θ, the proportion of the n agents who are strategic:

E [RS(A,B)] 6


O(
√
n), θ = 0,

O(
√
dn3/4), θ = Ω(1),

O(
√
dn1−

1+γ
4 ) θ = O(n−γ)

The extreme cases correspond to always using “first-order” feedback (nonstrategic agents =⇒ we
can compute gradients at each step and obtain O(

√
n) regret) versus “zeroth-order” feedback (cannot

compute many gradients and rely on O(
√
dn3/4)-regret algorithm).

We observe that, because our other results show that the learning problem is convex, one can also
apply other convex optimization algorithms to the problem and obtain somewhat different regret
bounds, in particular, trading off a higher dependence on dimension d for an improved dependence
on n.

3



References
Balcan, M., Blum, A., Haghtalab, N., and Procaccia, A. D. (2015). Commitment without regrets:

Online learning in stackelberg security games. In Proceedings of the Sixteenth ACM Conference
on Economics and Computation, EC ’15, Portland, OR, USA, June 15-19, 2015, pages 61–78.

Brückner, M. and Scheffer, T. (2011). Stackelberg games for adversarial prediction problems. In
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 547–555. ACM.

Flaxman, A. D., Kalai, A. T., and McMahan, H. B. (2005). Online convex optimization in the
bandit setting: gradient descent without a gradient. In Proceedings of the sixteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 385–394. Society for Industrial and Applied
Mathematics.

Hardt, M., Megiddo, N., Papadimitriou, C., and Wootters, M. (2016). Strategic classification. In
Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, pages
111–122. ACM.

Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent.
In Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages
928–936.

4


